some fixes and improvements, removed graphs bullshit
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index ab0ce76..3b1e388 100644 (file)
       V(r) = \frac{Z_1 Z_2 e^2}{4 \pi \epsilon_0 r} \Phi(\frac{r}{a})
       \]
       Dabei ist $\Phi$ eine geeignete Abschirmfunktion und $a$ der sogenannte Abschirmparameter in der Gr"o"senordnung des Bohrradius.
-     Die besten "Ubereinstimmungen mit dem Experiment erh"alt man durch Verwendung des sogenannten \dq universal potential\dq{} \cite{ziegler_biersack_littmark}, dass von Ziegler et al. mit verbesserten Methoden, unter anderem dem Anfitten von Daten zahlreicher Ion-Target-Kombinationen an die Abschirmfunktion, eingef"uhrt wurde.
+      Die Abschirmfunktion beachtet die Abschirumung des Coulombpotentials der Kerne des Ions und des Targetatoms durch die Elektronen.
+      Die besten "Ubereinstimmungen mit dem Experiment erh"alt man durch Verwendung des sogenannten \dq universal potential\dq{} \cite{ziegler_biersack_littmark}, dass von Ziegler et al. mit verbesserten Methoden, unter anderem dem Anfitten von Daten zahlreicher Ion-Target-Kombinationen an die Abschirmfunktion, eingef"uhrt wurde.
+      Diese ist in guter N"aherung f"ur alle Ion-Target-Kombinationen g"ultig.
+      Desweiteren schl"agt Biersack in \cite{ziegler_biersack_littmark} eine analytische N"aherungsformel zur einfachen Berechnung des Ablenkwinkels $\Theta$ aus dem Sto"sparameter $p$ vor.
 
       \subsubsection{Elektronische Bremskraft}
 
       Die Bremskraft ist proportional zur Geschwindigkeit, also proportional zur Wurzel aus der Energie des Ions.
       \begin{equation}
       S_e(E) = k_L \sqrt{E}
+      \label{eq:el_sp}
       \end{equation}
       Die Proportionalit"atskonstante $k_L$ ist ein geschwindigkeitsunabh"angiger Ausdruck und beachtet die Abh"angigkeit der Bremskraft von der Kernladungszahl des Ions und der Targetatome.
       Schaleneffekte und damit verbundene Oszillationen in der Abh"angigkeit der Kernladungszahl k"onnen durch einen weiteren Faktor $k_F$, den LSS-Korrekturfaktor, der durch experimentelle Ergebnisse angepasst wurde, beachtet werden.
 
     \subsection{Implantationsprofil}
 
-    Mit den im letzten Abschnitt bestimmten Bremsquerschnitten $S_n$ uund $S_e$ kann nun mittels \eqref{eq:range} die mittlere Reichweite $R$ der Ionen angegeben werden.
+    Mit den im letzten Abschnitt bestimmten Bremsquerschnitten $S_n$ und $S_e$ kann nun mittels \eqref{eq:range} die mittlere Reichweite $R$ der Ionen angegeben werden.
     Diese ist allerdings ungleich der mittleren Tife, in der das Ion zur Ruhe kommt, da das implantierte Ion seine Richtung nach jedem Sto"s ver"andern wird.
     Die so erhaltene projezierte Reichweite $R_p$ und deren Standardabweichung $\Delta R_p$ k"onnen durch L"osung von Integro-Differentialgleichungen \cite{lss_2} berechnet werden.
 
     Das Teilchen verliert einen diskreten Betrag der Energie durch Kernst"o"se und kontinuierlich auf Grund der elektronischen Bremskraft.
    
     Das einfallende Teilchen startet mit der Anfangsenergie $E = E_0$ an der Oberfl"ache des Targets.
-    Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Energie"ubertrag $T$ und den Azimutwinkel $\Phi$ abgebildet.
+    Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet.
 
     Der Azimutwinkel $\Phi$ ist statistisch isotrop verteilt.
     \begin{equation}
     \Phi = 2 \pi R_3
     \end{equation}
 
+    EDIT: Wahl von Sto"sparameter $p$, Wahl von mittlerer freier Wegl"ange $l$.
+
+    Mit Hilfe der von Biersack entwickelten \dq magic formula \dq{} \cite{ziegler_biersack_littmark} kann aus dem Sto"ssparamter $p$ analytisch der Streuwinkel $\Theta$ errechnet werden.
+    Mit Hilfe des Ablenkwinkels wird dann durch \eqref{eq:final_delta_e} der Energie"ubertrag $\Delta E$ bestimmt.
+    Der elektronische Energieverlust ergibt sich aus dem Produkt der freien Wegl"ange $l$ mit dem Ausdruck f"ur die elektronische Bremskraft $S_e(E)$ aus \eqref{eq:el_sp}.
+    Durch die freie Wegl"ange und den Ablenk- und Azimutwinkel ist der Ort des n"achsten Sto"sprozesses festgelegt.
+    Die Koordinaten und der Energie"ubertrag jedes Sto"ses werden protokolliert, womit die nukleare und elektronische Bremskraft bestimmt ist.
+    Die Koordinaten der Ionen die unter einen bestimmten Energiebetrag abgefallen sind merkt sich das Programm ebenfalls.
+
     \subsection{Strahlensch"aden und Amorphisierung}
 
     Durch die Bestrahlung des Targets werden Sch"aden im Kristallgitter hervorgerufen.