commit often and soon
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index 7a2ee42..612fb5d 100644 (file)
@@ -4,10 +4,10 @@
   \section{Monte-Carlo-Simulation}
 
   Monte-Carlo-Simulationen sind numerische Computer-Experimente zur Untersuchung von interessierenden Sachverhalten.
-  Gegen"uber anderen Rechenmethoden basieren diese Computer-Experiemnte auf stochastischen Modellen.
+  Gegen"uber anderen Rechenmethoden basieren diese Computerexperiemnte auf stochastischen Modellen.
   Die Zuf"allgkeit mikroskopischer Ereignisse spielt, wie im realen System des Experimentes, die wesentlich Rolle.
   Der Rechner wird zum virtuellen Labor, in dem ein bestimmtest System untersucht wird.
-  Eine solche Computer-Simulation kann als numerisches Experiment betrachtet werden.
+  Eine solche Computersimulation kann als numerisches Experiment betrachtet werden.
   Makroskopische, observable Gr"ossen sind, wie im Experiment, von statistischen Fluktuationen beeinflusst.
   Die Reproduzierbarkeit von Ergebnissen hat demnach statistischen Charakter.
 
@@ -28,6 +28,7 @@
   Hiervon ausgehend k"onnen beliebige Verteilungen durch Transformationen und Verwerfungsmethoden erzeugt werden.
 
     \subsection{Erzeugung gleichverteilter Pseudozufallszahlen}
+    \label{subsection:rand_gen}
 
     Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode \cite{knuth,nr}, welche eine Sequenz von ganzen Zahlen $I_1, I_2, I_3, \ldots$ aus dem Intervall $I = [0,m-1]$ generiert.
     Dabei gilt folgende Vorschrift:
@@ -43,7 +44,7 @@
     a = 7^5 = 16807, \quad m = 2^{31} - 1 = 2147483647, \quad c = 0
     \end{equation}
     einen minimalen Standard was die Qualit"at der Zufallszahlen angeht.
-    Diese Wahl der Konstanten wird in vielen Zufallsfunktionen der Standardbibliotheken verwendet.
+    Diese Wahl der Konstanten wird in allen g"angigen Zufallszahlengeneratoren der Standardbibliotheken verwendet.
 
     \subsection{Transformation auf spezielle Zufallsverteilungen}
 
       Die elektronische Bremskraft ist abh"angig von der Energie der Ionen.
       Verschiedene Theorien beschreiben die Abbremsung unterschiedlich schneller Ionen.
       Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden.
-      F"ur hohe, nicht-relativistische Energien (kleiner $10 Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden.
+      F"ur hohe, nichtrelativistische Energien (kleiner $10 Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden.
       Zus"atzliche relativistische Effekte f"uhren zu einem Anstieg der Bremskraft bei noch h"oheren Energien.
 
       F"ur niedrige Teilchengeschwindigkeiten kann die elektronische Abbremsung mit Hilfe der LSS-Theorie \cite{lss} beschrieben werden.
     Gleichzeitig heilen Defekte aus, indem verlagerte Gitteratome an ihren Gitterplatz zur"uckkehren.
     Bei der thermischen Defektausheilung wird dies durch die thermisch erh"ohte Mobilit"at der Defekte erm"oglicht.
     Andererseits kann der Ionenstrahl selbst zur Defektausheilung beitragen.
-    Dieser kann an amorph-kristal-linen Grenzfl"achen Rekristallisation beg"unstigen \cite{jackson} oder auch zur Bildung von Kristallisationskeimen in amorphen Gebieten f"uhren \cite{spinella}.
-    Man spricht von Ionenstrahl-induzierter Defektausheilung beziehungsweise Rekristallisation (IBIC, kurz f"ur: Ion Beam Induced Crystallization).
+    Dieser kann an amorph-kristallinen Grenzfl"achen Rekristallisation beg"unstigen \cite{jackson} oder auch zur Bildung von Kristallisationskeimen in amorphen Gebieten f"uhren \cite{spinella}.
+    Man spricht von ionenstrahlinduzierter Defektausheilung beziehungsweise Rekristallisation (IBIC, kurz f"ur: Ion Beam Induced Crystallization).
 
     Bei niedrigen Implantationstemperaturen, typischerweise kleiner $85 K$, kommt es beim Erreichen einer kritischen Energiedichte $e_c$ f"ur die in einem nuklearen Sto"s deponierte Energie in Silizium zur Amorphisierung \cite{vook}.
     In diesem Fall ergibt sich die Amorphisierungsdosis $D_0$ aus der nuklearen Bremskraft $S_n$ zu:
     \end{equation}
 
     Bei hohen Temepraturen finden Ausheilvorg"ange statt, was eine Erh"ohung der Amorphisierungsdosis zur Folge hat.
-    Das Amorphisierungsmodell nach More-head und Crowder \cite{morehead_crowder} geht von einer erh"ohten Konzentration an Leerstellen im Zentrum und einer erh"ohten Konzentration an Zwischengitteratomen im Randbereich einer Sto"skaskade aus.
+    Das Amorphisierungsmodell nach Morehead und Crowder \cite{morehead_crowder} geht von einer erh"ohten Konzentration an Leerstellen im Zentrum und einer erh"ohten Konzentration an Zwischengitteratomen im Randbereich einer Sto"skaskade aus.
     W"ahrend der Abklingzeit der Sto"skaskade ($\sim 10^{-9} s$) k"onnen Leerstellen durch thermische Diffusion aus dem Zentrum der Sto"skaskade hearsuwandern und mit Zwischengitteratomen rekombinieren.
     Dies hat eine Verkleinerung des zentralen, amorph werdenden Volumens zur Folge.
     Der Vorgang ist abh"angig von der Implantationstemperatur, welche die Diffusionsl"ange der Leerstellen bestimmt und der nuklearen Bremskraft, die das direkte Sch"adigungsvolumen festlegt.
     \frac{A_a}{A_0} = 1 - \Big[ \sum^{m-1}_{k=0} \frac{A_i D}{k!} \, exp(A_i D) \Big] \quad \textrm{.}
     \end{equation}
 
-    Dennis und Hale \cite{dennis_hale} erreichten nach diesem Modell f"ur Argon- und Krypton-Ionen in Silizium die beste "Ubereinstimmung mit experimentell bestimmten Sch"adigungsdaten f"ur $m=2$ und $m=3$.
+    Dennis und Hale \cite{dennis_hale} erreichten nach diesem Modell f"ur Argon- und Kryptonionen in Silizium die beste "Ubereinstimmung mit experimentell bestimmten Sch"adigungsdaten f"ur $m=2$ und $m=3$.
     Dies deutet darauf hin, dass selbst bei schweren Ionen ausschliesslich direkte Amorphisierung ($m=1$) unwahrscheinlich ist.
     Bei niedrigen Dosen zeigt sich auf Grund der direkten Amorphisierung ein linearer Zusammenhang zwischen dem amorphen Fl"achenanteil und der Dosis.
     Der lineare Verlauf geht mit steigender Dosis mit der Bildung amorpher Gebiete durch "Uberlappung in einen maximal quadratischen Anstieg "uber.
-    Der Verlauf s"attigt schliesslich auf Grund der Abnahme ungesch"adigter und kristallin-gesch"adigter Fl"achenanteile.
+    Der Verlauf s"attigt schliesslich auf Grund der Abnahme ungesch"adigter und kristallin gesch"adigter Fl"achenanteile.
 
     Da das "Uberlappungsmodell keine temperaturabh"angigen Ausheilmechanismen ber"ucksichtigt und somit lediglich f"ur tiefe Temperaturen geeignet ist wurde von Hecking \cite{hecking1,hecking2} ein neues Defekterzeugungs- und Defektwechselwirkungsmodell entwickelt.
     Ein eingeschossenes Ion "ubertr"agt seine Energie in Einzelst"o"sen auf die Targetatome, die ihrerseits weitere Targetatome ansto"sen und so eine Sto"skaskade bilden.
     Ist die Energie aller verlagerten Atome unter die Energie abgesunken welche zur weiteren Verlagerung von Atomen n"otig ist, hat sich die kinetische Energie des einfallenden Ions in Schwingungsenergie der im Kaskadenvolumen enthaltenen Atome umgewandelt.
-    Dieses r"aumlich begrenzte Gebiet sehr hoher Energiedichte, in dem die kollektiv angeregten Atome einen quasi-fl"ussigen Zustand bilden, nennt man einen Energie-Spike.
+    Dieses r"aumlich begrenzte Gebiet sehr hoher Energiedichte, in dem die kollektiv angeregten Atome einen quasi fl"ussigen Zustand bilden, nennt man einen Energiespike.
     Die thermische Relaxation dieses Spikes kann als W"armediffusionsprozess beschrieben werden.
     Erreicht die Kristallisationsfront den Kaskadenkern bevor die Kristallisationstemperatur unterschritten wird, kann der Spike vollst"andig rekristallisieren.
     Dies ist bei hohen Targettemperaturen der Fall, wenn den Leerstellen und Zwischengitteratomen auf Grund der langsamen Abk"uhlung genug Zeit zur Rekombination bleibt.