mre fixes ...
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index ea00803..6190ec0 100644 (file)
@@ -9,7 +9,7 @@
   Die Zuf"allgkeit mikroskopischer Ereignisse spielt, wie im realen System des Experimentes, die wesentliche Rolle.
   Der Rechner wird zum virtuellen Labor, in dem ein bestimmtest System untersucht wird.
   Eine solche Computersimulation kann als numerisches Experiment betrachtet werden.
-  Makroskopische, observable Gr"o"sen sind, ebenso wie im Experiment, von statistischen Fluktuationen beeinflusst.
+  Makroskopische observable Gr"o"sen sind, ebenso wie im Experiment, von statistischen Fluktuationen beeinflusst.
   Die Reproduzierbarkeit von Ergebnissen hat demnach statistischen Charakter.
 
   Der Vorteil der Monte-Carlo-Methode ist das relativ einfache Erzielen von Ergebnissen f"ur Problemstellungen, die ohne N"aherungen analytisch nicht l"osbar oder sehr aufw"andig sind.
@@ -44,7 +44,7 @@
     \begin{equation} \label{eq:kon_v}
     a = 7^5 = 16807, \quad m = 2^{31} - 1 = 2147483647, \quad c = 0
     \end{equation}
-    einen minimalen Standard was die Qualit"at der Zufallszahlen angeht.
+    einen minimalen Standard, was die Qualit"at der Zufallszahlen angeht.
     Diese Wahl der Konstanten wird in allen g"angigen Zufallszahlengeneratoren der Standardbibliotheken verwendet.
 
     \subsection{Transformation auf spezielle Zufallsverteilungen}
@@ -63,7 +63,7 @@
     \int_{- \infty}^{+ \infty}p(x)dx = \int_{0}^{1}p(x)dx = 1
     \end{equation}
     Diese dienen als Basis f"ur beliebige Verteilungen.
-    Einige in dieser Arbeit ben"otigten Transformationen sollen im Folgenden diskutiert werden.
+    Die in dieser Arbeit ben"otigten Transformationen sollen im Folgenden diskutiert werden.
 
       \subsubsection{Zufallszahlen mit gleichverteilter Wahrscheinlichkeit}
 
       Dann kann wie in \eqref{eq:trafo} die Transformation durchgef"uhrt werden.
       Die Werte f"ur $x$ werden nun nach der Transformationsmethode im Intervall $[a,b]$ gew"ahlt, die Werte f"ur $y$ m"ussen gleichverteilt im Intervall $[0,f(x)]$ sein.
 
-  \section{Ion-Festk"orper Wechselwirkung}
+  \section{Ion-Festk"orper-Wechselwirkung}
 
   Zur theoretischen Beschreibung der Ionenimplantation muss die Wechselwirkung der Ionen mit dem Target betrachtet werden.
   Durch St"o"se mit den Kernen und Elektronen des Targets werden die Ionen im Festk"orper abgelenkt und abgebremst.
       \subsubsection{Elektronische Bremskraft}
 
       Der elektronische Energieverlust der Ionen an den Elektronen des Targets kommt haupts"achlich durch inelastische Streuung zustande.
-      Dies f"uhrt zur Anregung beziehungsweise Ionisation des Targets.
+      Dies f"uhrt zur Anregung beziehungsweise Ionisation der Targetatome.
       Die elektronische Bremskraft ist abh"angig von der Energie der Ionen.
       Verschiedene Theorien beschreiben die Abbremsung unterschiedlich schneller Ionen.
-      Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 \, Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden.
-      F"ur hohe, nichtrelativistische Energien (kleiner $10 \, Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden.
+      Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 \, MeV/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden.
+      F"ur hohe, nichtrelativistische Energien (kleiner $10 \, MeV/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden.
       Zus"atzliche relativistische Effekte f"uhren zu einem Anstieg der Bremskraft bei noch h"oheren Energien.
 
       F"ur niedrige Teilchengeschwindigkeiten kann die elektronische Abbremsung mit Hilfe der LSS-Theorie \cite{lss} beschrieben werden.
       \end{equation}
       Die Proportionalit"atskonstante $k_L$ ist ein geschwindigkeitsunabh"angiger Ausdruck und beinhaltet die Abh"angigkeit der Bremskraft von der Kernladungszahl des Ions und des Targetatoms.
       Schaleneffekte und damit verbundene Oszillationen in der Abh"angigkeit der Kernladungszahl k"onnen durch einen weiteren Faktor $k_F$, den LSS-Korrekturfaktor, der durch experimentelle Ergebnisse angepasst wurde, ber"ucksichtigt werden.
-      In \cite{ziegler_biersack_littmark} wird die ZBL-Theorie vorgestellt, die auch die Oszillationen erkl"art.
-      Dabei werden alle Bremskr"afte auf experimentell genau bekannte Wasserstoff-Bremskr"afte f"ur jedes Element zur"uckgef"uhrt.
-      Die Wasserstoff-Bremskr"afte werden mittels der Brandt-Kitagawa-Theorie f"ur schwere Ionen im gleichen Target skaliert.
 
     \subsection{Implantationsprofil}
 
     Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet.
 
     Es gibt Ans"atze die freie Wegl"ange zuf"allig zu bestimmen.
-    F"ur niedrige Ionenenergien (kleiner $0,1 \, Mev/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren.
+    F"ur niedrige Ionenenergien (kleiner $0,1 \, MeV/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren.
     Diese ist gegeben durch den mittleren Abstand der Targetatome.
     \begin{equation}
     l = N^{- \frac{1}{3}}
     \Phi = 2 \pi R_3
     \end{equation}
 
-    Mit Hilfe der von Biersack entwickelten \dq magic formula\dq{} \cite{ziegler_biersack_littmark} kann aus dem Sto"ssparamter $p$ analytisch der Streuwinkel $\Theta$ errechnet werden.
+    Mit Hilfe der von Biersack entwickelten \dq magic formula\dq{} \cite{ziegler_biersack_littmark} kann aus dem Sto"sparameter $p$ analytisch der Streuwinkel $\Theta$ errechnet werden.
     Mit Hilfe des Ablenkwinkels wird dann durch \eqref{eq:final_delta_e} der Energie"ubertrag $\Delta E$ bestimmt.
     Der elektronische Energieverlust ergibt sich aus dem Produkt der freien Wegl"ange $l$ mit dem Ausdruck f"ur die elektronische Bremskraft $S_e(E)$ aus \eqref{eq:el_sp} und der atomaren Dichte $N$.
     Durch die freie Wegl"ange und den Ablenk- und Azimutwinkel ist der Ort des n"achsten Sto"sprozesses festgelegt.
     Dabei werden Targetatome durch St"o"se mit Ionen, oder durch St"o"se durch bereits angesto"sene Atome, sogenannten Recoils, wenn diese mindestens die Verlagerungsenergie $E_d$ besitzen, verlagert.
     Im letzten Fall spricht man auch von Verlagerungskaskaden.
     So entstehen Leerstellen und Zwischengitteratome, sogenannte Frenkeldefekte, und komplexere Gitterdefekte, sogenannte Cluster.
-    Mit steigender Dosis beginnen gest"orte Gebiete zu "uberlappen was zu einer Ausbildung einer amorphen Schicht f"uhren kann.
+    Mit steigender Dosis beginnen gest"orte Gebiete zu "uberlappen, was zu einer Ausbildung einer amorphen Schicht f"uhren kann.
     Die Anzahl und Verteilung der Strahlensch"aden h"angt dabei von Temperatur, Energie und Masse der implantierten Ionen sowie der Masse der Targetatome ab.
     Die in einem prim"aren Sto"s verlagerten Atome, durch ein Ion der Energie $E$, kann nach Kinchin Pease \cite{kinchin_pease} zu
     \begin{equation}