more updates
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index 13286f7..7435d44 100644 (file)
@@ -30,7 +30,7 @@
     \subsection{Erzeugung gleichverteilter Pseudozufallszahlen}
     \label{subsection:rand_gen}
 
-    Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode \cite{knuth,nr}, welche eine Sequenz von ganzen Zahlen $I_1, I_2, I_3, \ldots$ aus dem Intervall $I = [0,m-1]$ generiert.
+    Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode \cite{knuth,nr}, welche eine Sequenz von ganzen Zahlen $I_j$ aus dem Intervall $I = [0,m-1]$ generiert.
     Dabei gilt folgende Vorschrift:
     \begin{equation} \label{eq:kon_m}
     I_{j+1} = ( a I_{j} + c ) \, mod \, m
       Dies f"uhrt zur Anregung beziehungsweise Ionisation des Targets.
       Die elektronische Bremskraft ist abh"angig von der Energie der Ionen.
       Verschiedene Theorien beschreiben die Abbremsung unterschiedlich schneller Ionen.
-      Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden.
-      F"ur hohe, nichtrelativistische Energien (kleiner $10 Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden.
+      Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 \, Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden.
+      F"ur hohe, nichtrelativistische Energien (kleiner $10 \, Mev/amu$) m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlustes herangezogen werden.
       Zus"atzliche relativistische Effekte f"uhren zu einem Anstieg der Bremskraft bei noch h"oheren Energien.
 
       F"ur niedrige Teilchengeschwindigkeiten kann die elektronische Abbremsung mit Hilfe der LSS-Theorie \cite{lss} beschrieben werden.
 
     Das Programm folgt den Bahnen einer gro"sen Anzahl von Teilchen, die in das Target implantiert werden.
     Jedes Ion startet mit einer gegebenen Energie, Position und Richtung.
-    Die Teilchen vollziehen Richtungs"anderungen auf Grund von Kernst"o"sen mit den Atomen des Targets.
+    Die Teilchen vollziehen Richtungs"anderungen aufgrund von Kernst"o"sen mit den Atomen des Targets.
     Zwischen zwei Kollisionen bewegt sich das Ion geradlinig innerhalb einer freien Wegl"ange.
     Durch die nukleare und elektronische Bremskraft verliert das Teilchen Energie.
     Die Verfolgung der Teilchenbahn terminiert, wenn die Energie unter einen bestimmten Wert abgefallen oder das Teilchen das Target verlassen hat.
     Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet.
 
     Es gibt Ans"atze die freie Wegl"ange zuf"allig zu bestimmen.
-    F"ur niedrige Ionenenergien (kleiner $0,1 Mev/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren.
+    F"ur niedrige Ionenenergien (kleiner $0,1 \, Mev/amu$) reicht es jedoch den amorphen Festk"orper durch eine feste freie Wegl"ange $l$ zu modellieren.
     Diese ist gegeben durch den mittleren Abstand der Targetatome.
     \begin{equation}
     l = N^{- \frac{1}{3}}
 
     \subsubsection{Modell der kritischen Energiedichte}
 
-    Bei niedrigen Implantationstemperaturen, typischerweise kleiner $85 K$, kommt es beim Erreichen einer kritischen Energiedichte $e_c$ f"ur die in einem nuklearen Sto"s deponierte Energie in Silizium zur Amorphisierung \cite{vook}.
+    Bei niedrigen Implantationstemperaturen, typischerweise kleiner $85 \, K$, kommt es beim Erreichen einer kritischen Energiedichte $e_c$ f"ur die in einem nuklearen Sto"s deponierte Energie in Silizium zur Amorphisierung \cite{vook}.
     In diesem Fall ergibt sich die Amorphisierungsdosis $D_0$ aus der nuklearen Bremskraft $S_n$ zu:
 
     \begin{equation}
 
     Bei hohen Temperaturen finden Ausheilvorg"ange statt, was eine Erh"ohung der Amorphisierungsdosis zur Folge hat.
     Das Amorphisierungsmodell nach Morehead und Crowder \cite{morehead_crowder} geht von einer erh"ohten Konzentration an Leerstellen im Zentrum und einer erh"ohten Konzentration an Zwischengitteratomen im Randbereich einer Sto"skaskade aus.
-    W"ahrend der Abklingzeit der Sto"skaskade ($\sim 10^{-9} s$) k"onnen Leerstellen durch thermische Diffusion aus dem Zentrum der Sto"skaskade herauswandern und mit Zwischengitteratomen rekombinieren.
+    W"ahrend der Abklingzeit der Sto"skaskade ($\sim 10^{-9} \, s$) k"onnen Leerstellen durch thermische Diffusion aus dem Zentrum der Sto"skaskade herauswandern und mit Zwischengitteratomen rekombinieren.
     Dies hat eine Verkleinerung des zentralen, amorph werdenden Volumens zur Folge.
     Der Vorgang ist abh"angig von der Implantationstemperatur, welche die Diffusionsl"ange der Leerstellen bestimmt und der nuklearen Bremskraft, die das direkte Sch"adigungsvolumen festlegt.
     Die Amorphisierungsdosis lautet somit
     \begin{equation}
     D(T) = D_0 \Big[ 1 - C \, exp\Big( - \frac{E_{diff}}{2 k_B T} \Big) \Big] \quad \textrm{,}
     \end{equation}
-    wobei $D_0 = \frac{E_d n}{S_n}$ die Amorphisierungsdosis f"ur $T \rightarrow 0 K$, $C = const. \, S_n^{-\frac{1}{2}}$, $E_{diff}$ die Aktivierungsenergie f"ur Leerstellendiffusion, $E_d$ die Atomverlagerungsenergie und $n$ die atomare Dichte ist.
+    wobei $D_0 = \frac{E_d n}{S_n}$ die Amorphisierungsdosis f"ur $T \rightarrow 0 \, K$, $C = const. \, S_n^{-\frac{1}{2}}$, $E_{diff}$ die Aktivierungsenergie f"ur Leerstellendiffusion, $E_d$ die Atomverlagerungsenergie und $n$ die atomare Dichte ist.
     
     \subsubsection{Das "Uberlappungsmodell}
 
 
     Dennis und Hale \cite{dennis_hale} erreichten nach diesem Modell f"ur Argon- und Kryptonionen in Silizium die beste "Ubereinstimmung mit experimentell bestimmten Sch"adigungsdaten f"ur $m=2$ und $m=3$.
     Dies deutet darauf hin, dass selbst bei schweren Ionen ausschlie"slich direkte Amorphisierung ($m=1$) unwahrscheinlich ist.
-    Bei niedrigen Dosen zeigt sich auf Grund der direkten Amorphisierung ein linearer Zusammenhang zwischen dem amorphen Fl"achenanteil und der Dosis.
+    Bei niedrigen Dosen zeigt sich aufgrund der direkten Amorphisierung ein linearer Zusammenhang zwischen dem amorphen Fl"achenanteil und der Dosis.
     Der lineare Verlauf geht mit steigender Dosis mit der Bildung amorpher Gebiete durch "Uberlappung in einen maximal quadratischen Anstieg "uber.
-    Der Verlauf s"attigt schlie"slich auf Grund der Abnahme ungesch"adigter und kristallin gesch"adigter Fl"achenanteile.
+    Der Verlauf s"attigt schlie"slich aufgrund der Abnahme ungesch"adigter und kristallin gesch"adigter Fl"achenanteile.
 
     \subsubsection{Strahlensch"adigungsmodell nach Hecking}
 
     Dieses r"aumlich begrenzten Gebiet sehr hoher Energiedichte, in dem die kollektiv angeregten Atome einen quasi fl"ussigen Zustand bilden, nennt man einen Energiespike.
     Die thermische Relaxation dieses Spikes kann als W"armediffusionsprozess beschrieben werden.
     Erreicht die Kristallisationsfront den Kaskadenkern bevor die Kristallisationstemperatur unterschritten wird, kann der Spike vollst"andig rekristallisieren.
-    Dies ist bei hohen Targettemperaturen der Fall, wenn den Leerstellen und Zwischengitteratomen, auf Grund der langsamen Abk"uhlung, genug Zeit zur Rekombination bleibt.
+    Dies ist bei hohen Targettemperaturen der Fall, wenn den Leerstellen und Zwischengitteratomen, aufgrund der langsamen Abk"uhlung, genug Zeit zur Rekombination bleibt.
     Bei kleinen Temperaturen und einer darausfolgenden schnellen W"armediffusion kann wegen unvollst"andiger Rekristallisation ein amorpher Kaskadenkern zur"uckbleiben.
     Die Wahrscheinlichkeit f"ur die Bildung amorpher Volumina steigt mit fallender Temperatur.
     Neben der Implantationstemperatur h"angt der Defektzustand entscheidend von der Kaskadengeometrie und dem Sch"adigungszustand der Kaskadenumgebung ab.