hmm, nochmal ueberdenken
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index 644b09b..7a2ee42 100644 (file)
     Nach dem "Uberlappungsmodell nach Gibbons \cite{gibbons} hinterl"asst jedes Ion ein zylinderf"ormiges, defektreiches Volumen mit der Grundfl"ache $A_i$.
     Amorphisierung tritt ein, wenn $m$ Ionen den selben Bereich gesch"adigt haben, also nach $m-1$-facher "Uberlappung. 
     Der "Uberlappungsparameter $m$ ist im wesentlichen abh"angig von der Ionenmasse.
+    Das Verh"altnis des amorphen Fl"achenanteils $A_a$ zur gesamt bestrahlten Fl"ache $A_0$ nach einer Dosis $D$ ergibst sich zu:
+    \begin{equation}
+    \frac{A_a}{A_0} = 1 - \Big[ \sum^{m-1}_{k=0} \frac{A_i D}{k!} \, exp(A_i D) \Big] \quad \textrm{.}
+    \end{equation}
 
-    Dennis und Hale erreichten nach diesem Modell f"ur Argon- und Krypton-Ionen in Silizium die beste "Ubereinstimmung mit experimentell bestimmten Sch"adigungsdaten f"ur $m=2$ und $m=3$.
-    Dies deutet darauf hin, dass selbst bei schweren Ionen ausschliesslich direkte Amorphisierung ($m=1$) uunwahrscheinlich ist.
-
-
+    Dennis und Hale \cite{dennis_hale} erreichten nach diesem Modell f"ur Argon- und Krypton-Ionen in Silizium die beste "Ubereinstimmung mit experimentell bestimmten Sch"adigungsdaten f"ur $m=2$ und $m=3$.
+    Dies deutet darauf hin, dass selbst bei schweren Ionen ausschliesslich direkte Amorphisierung ($m=1$) unwahrscheinlich ist.
+    Bei niedrigen Dosen zeigt sich auf Grund der direkten Amorphisierung ein linearer Zusammenhang zwischen dem amorphen Fl"achenanteil und der Dosis.
+    Der lineare Verlauf geht mit steigender Dosis mit der Bildung amorpher Gebiete durch "Uberlappung in einen maximal quadratischen Anstieg "uber.
+    Der Verlauf s"attigt schliesslich auf Grund der Abnahme ungesch"adigter und kristallin-gesch"adigter Fl"achenanteile.
+
+    Da das "Uberlappungsmodell keine temperaturabh"angigen Ausheilmechanismen ber"ucksichtigt und somit lediglich f"ur tiefe Temperaturen geeignet ist wurde von Hecking \cite{hecking1,hecking2} ein neues Defekterzeugungs- und Defektwechselwirkungsmodell entwickelt.
+    Ein eingeschossenes Ion "ubertr"agt seine Energie in Einzelst"o"sen auf die Targetatome, die ihrerseits weitere Targetatome ansto"sen und so eine Sto"skaskade bilden.
+    Ist die Energie aller verlagerten Atome unter die Energie abgesunken welche zur weiteren Verlagerung von Atomen n"otig ist, hat sich die kinetische Energie des einfallenden Ions in Schwingungsenergie der im Kaskadenvolumen enthaltenen Atome umgewandelt.
+    Dieses r"aumlich begrenzte Gebiet sehr hoher Energiedichte, in dem die kollektiv angeregten Atome einen quasi-fl"ussigen Zustand bilden, nennt man einen Energie-Spike.
+    Die thermische Relaxation dieses Spikes kann als W"armediffusionsprozess beschrieben werden.
+    Erreicht die Kristallisationsfront den Kaskadenkern bevor die Kristallisationstemperatur unterschritten wird, kann der Spike vollst"andig rekristallisieren.
+    Dies ist bei hohen Targettemperaturen der Fall, wenn den Leerstellen und Zwischengitteratomen auf Grund der langsamen Abk"uhlung genug Zeit zur Rekombination bleibt.
+    Bei kleinen Temperaturen und einer darausfolgenden schnellen W"armediffusion kann wegen unvollst"andiger Rekristallisation ein amorpher Kaskadenkern zur"uckbleiben.
+    Die Wahrscheinlichkeit f"ur die Bildung amorpher Volumina steigt mit fallender Temepratur.
+    Neben der Implantationstemperatur h"angt der Defektzustand entscheidend von der Kaskadengeometrie und dem Sch"adigungszustand der Kaskadenumgebung ab.
+    Ein hoher Sch"adigungsgrad einer Kaskadenumgebung erschwert die epitaktische Rekristallisation.
 
+