minor fixes
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index 884199a..ab0ce76 100644 (file)
@@ -1,22 +1,23 @@
 \chapter{Grundlagen}
+\label{chapter:grundlagen}
 
   \section{Monte-Carlo-Simulation}
 
-  Monte-Carlo-Simulationen sind Computer-Experimente zur Untersuchung interessierender Sachverhalte, die auf stochastischen Simulationsalgorithemn basieren.
+  Monte-Carlo-Simulationen sind Computer-Experimente zur Untersuchung interessierender Sachverhalte, die auf stochastischen Simulationsalgorithmen basieren.
   Dabei werden vom Computer generierte Pseudozufallszahlen auf physikalische Gr"o"sen abgebildet.
   Den Ausgangspunkt bilden dabei sogenannte Standard-Pseudozufallszahlen, die auf einem vorgegebenen Intervall gleichverteilt sind.
   Hiervon ausgehend k"onnen beliebige Verteilungen durch Transformationen und Verwerfungsmethoden erzeugt werden.
 
     \subsection{Erzeugung gleichverteilter Pseudozufallszahlen}
 
-    Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode, welche eine Sequenz von ganzen Zahlen $I_1, I_2, I_3,$ \ldots aus dem Intervall $I = [0,m-1]$ generiert.
+    Die h"aufigste Methode zur Erzeugung von Zufallszahlen ist die lineare Kongruenzmethode, welche eine Sequenz von ganzen Zahlen $I_1, I_2, I_3, \ldots$ aus dem Intervall $I = [0,m-1]$ generiert.
     Dabei gilt folgende Vorschrift:
     \begin{equation} \label{eq:kon_m}
     I_{j+1} = ( a I_{j} + c ) \, mod \, m
     \end{equation}
     \[ m: \textrm{Modulus, } a: \textrm{Multiplikator, } c: \textrm{Inkrement, } I_0: \textrm{Startwert} \]
     Die Zufallszahlen k"onnen sich mit einer Periode, die offensichtlich nicht gr"o"ser als $m$ ist, wiederholen.
-    Die Qualit"at der Zufallszahlen h"angt dabei sehr stark von der Wahl der Konstanten $a, c, mI_0$ ab.
+    Die Qualit"at der Zufallszahlen h"angt dabei sehr stark von der Wahl der Konstanten $a, c, m$ und  $I_0$ ab.
     Leider gibt es keine einfache mathematische Methode zur Ermittlung optimaler Konstanten.
     Nach Park und Miller \cite{park_miller_zufall} erf"ullt man mit
     \begin{equation} \label{eq:kon_v}
       Gleichverteilte Zufallszahlen $z_j$ in einem Intervall $[0,M[$ erh"alt man denkbar einfach durch skalieren der $x_j$ mit $M$.
       \begin{equation}
       z_j = M x_j = M \frac{I_j}{m}
+      \label{eq:gleichverteilte_r}
       \end{equation}
 
       \subsubsection{Zufallszahlen mit linear steigender Wahrscheinlichkeit}
+      \label{subsubsection:lin_g_p}
 
       Zufallszahlen deren Wahrscheinlichkeit mit ihrem Wert im Intervall $[0,Z[$ linear ansteigen
       \begin{equation}
@@ -78,6 +81,7 @@
       berechnet werden.
 
       \subsubsection{Verwerfungsmethode zur Erzeugung beliebiger Verteilungen}
+      \label{subsubsection:verwerf_meth}
 
       Mit Hilfe der Verwerfungsmethode k"onnen Zufallszahlen mit beliebiger Wahrscheinlichkeitsverteilung $p(x)$ generiert werden.
       Sie basiert auf einer einfachen geometrischen "Uberlegung (Abbildung \ref{img:rej_meth}).
       S_n(E) = \int_0^{T_{max}} T d \sigma
       \end{equation}
 
+      Nun muss noch ein geeignetes interatomares Potential $V(r)$ zur Beschreibung der Wechselwirkung der Ionen mit dem Festk"orper gefunden werden.
       F"ur das interatomare Potential $V(r)$ wird oft ein abgeschirmtes Coulomb-Potential verwendet \cite{ziegler_biersack_littmark}.
       \[
       V(r) = \frac{Z_1 Z_2 e^2}{4 \pi \epsilon_0 r} \Phi(\frac{r}{a})
 
     \subsection{Die Monte-Carlo-Simulation {\em TRIM}}
 
-    Mit Hilfe der Monte-Carlo-Simulation {\em TRIM} \cite{ziegler_biersack_littmark,biersack_haggmark} (kurz f"ur {\bf TR}ansport of {\bf I}ons in {\bf M}atter) k"onnen die tiefnabh"angigen Bremskr"afte und die Reichweitenverteilung simuliert werden.
+    Mit Hilfe der Monte-Carlo-Simulation {\em TRIM} \cite{ziegler_biersack_littmark,biersack_haggmark} (kurz f"ur {\bf TR}ansport of {\bf I}ons in {\bf M}atter) k"onnen die tiefenabh"angigen Bremskr"afte und die Reichweitenverteilung simuliert werden.
     Da in dieser Arbeit von {\em TRIM} simulierte nukleare Bremskraftprofile, Reichweitenverteilungen und Informationen aus den protokollierten Kollisionen verwendet werden, soll hier grob auf den Ablauf des Programms eingegangen werden.
 
     Das Programm folgt den Bahnen einer grossen Anzahl von Teilchen die in das Target implantiert werden.