++grundlagen;
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index 9516a59..b9a1c8d 100644 (file)
 
       \subsubsection{Zufallszahlen mit linear steigender Wahrscheinlichkeit}
 
-      Zufallszahlen deren Wahrscheinlichkeit mit ihrem Wert im Intervall $[0,Z[ linear ansteigen
+      Zufallszahlen deren Wahrscheinlichkeit mit ihrem Wert im Intervall $[0,Z[$ linear ansteigen
       \begin{equation}
-      p(z) = az + b
+      p(z) = \left\{
+        \begin{array}{ll}
+       az + b & 0 \leq z < Z \\
+       0 & \textrm{sonst}
+       \end{array} \right.
       \end{equation}
       realisiert man durch folgende Transformation:
+      \begin{eqnarray}
+        p(z)dz & = & p(x)dx \nonumber \\
+        \frac{dx}{dz} & = & p(z) \nonumber \\
+        x & = & \int_{- \infty}^z p(z')dz' = \int_0^z (az' + b) dz' = \frac{1}{2} az^2 + bz \label{eq:trafo}
+      \end{eqnarray}
+      Durch Aufl"osen von \eqref{eq:trafo} nach $z$ und Ausschluss der negativen L"osung erh"alt man:
       \begin{equation}
-      p(z)dz = p(x)dx \\
-      \frac{dx}{dz} = p(z) \\
-      x = \infty_0^z p(z')dz' = \infty_0^z (az' + b) dz' = \frac{1}{2} az^2 + bz
+      z = \frac{-b + \sqrt{b^2 + 2 a x}}{a} \quad \textrm{.}
       \end{equation}
-      Durch Aufl"osen nach $z$ und Ausschluss der negativen L"osung 
-
+      So erh"alt man Zufallszahlen $z_j$ im Intervall $[0,1[$ durch $x_j \in [0,b+\frac{a}{2}[$.
+      Sollen Zufallszahlen im Intervall $[0,Z[$ liegen, m"ussen sie durch
+      \begin{equation}
+      z_j = Z \frac{-b + \sqrt{b^2 + 2 a (b+\frac{a}{2}) \frac{I_j}{m}}}{a}
+      \end{equation}
+      berechnet werden.
 
       \subsubsection{Verwerfungsmethode zur Erzeugung beliebiger Verteilungen}
 
+      Mit Hilfe der Verwerfungsmethode k"onnen Zufallszahlen mit beliebiger Wahrscheinlichkeitsverteilung $p(x)$ generiert werden.
+      Sie basiert auf einer einfachen geometrischen "Uberlegung.
+      Die Verteilung $p(x)$ sei im Intervall $[a,b]$ mit $p(x) \geq 0 \quad \forall x \in [a,b]$ gegeben.
+      Das Maximum von $p(x)$ sei $p_m$.
+      Die Erzeugung der Zufallszahlen funktioniert nun wie folgt:
+      \begin{enumerate}
+        \item Ausw"urfeln zweier gleichverteilter Zufallszahlen $x \in [a,b]$ und $y \in [0,p_m]$.
+       \item Ist $y \leq p(x)$, so ist $x$ die n"achste Zufallszahl, ansonsten zur"uck zu 1.
+      \end{enumerate}
+      \begin{figure}[h]
+        \includegraphics[width=10cm]{rej_meth.eps}
+       \caption{Beliebige Wahrscheinlichkeitsverteilung $p(x)$ im Intervall $[a,b]$ mit Maximum $p_m$}
+       \label{img:rej_meth}
+      \end{figure}
+      Diese Methode ist zwar sehr einfach, jedoch wird sie um so ineffizienter, je groesser die Fl"ache der Vergleichsfunktion (hier: $f(x) = p_m$) im Vergleich zu $p(x)$ zwischen $a$ und $b$ wird.
+      Deshalb macht es Sinn die Funktion $f(x)$ "ahnlich der Funktion $p(x)$ mit $f(x) \geq p(x); \, x \in [a,b]$ zu w"ahlen. 
+      Das unbestimmte Integral $F(x) = \int f(x) dx$ muss dabei bekannt und invertierbar sein.
+      Dann kann wie in \eqref{eq:trafo} die Transformation durchgef"uhrt werden.
+      Die Werte f"ur $x$ werden nun nach der Transformationsmethode im Intervall $[a,b]$ gew"ahlt, die Werte f"ur $y$ m"ussen gleichverteilt im Intervall $[0,f(x)]$ sein.
+
   \section{Ion-Festk"orper Wechselwirkung}
 
   Zur theoretischen Beschreibung der Ionenimplantation mu"s die Wechselwirkung der Ionen mit dem Target betrachtet werden.