began trim chapter
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index 2e31fae..be7381d 100644 (file)
 
     \subsection{Die Monte-Carlo-Simulation {\em TRIM}}
 
+    Mit Hilfe der Monte-Carlo-Simulation {\em TRIM} \cite{ziegler_biersack_littmark,biersack_haggmark} (kurz f"ur {\bf TR}ansport of {\bf I}ons in {\bf M}atter) k"onnen die tiefnabh"angigen Bremskr"afte und die Reichweitenverteilung simuliert werden.
+    Da in dieser Arbeit von {\em TRIM} simulierte nukleare Bremskraftprofile, Reichweitenverteilungen und Informationen aus den protokollierten Kollisionen verwendet werden, soll hier grob auf den Ablauf des Programms eingegangen werden.
+
+    Das Programm folgt den Bahnen einer grossen Anzahl von Teilchen die in das Target implantiert werden.
+    Jedes Ion startet mit einer gegebenen Energie, Position und Richtung.
+    Die Teilchen vollziehen Richtungs"anderungen auf Grund von Kernst"o"sen mit den Atomen des Targets.
+    Zwischen zwei Kollisionen bewegt sich das Ion geradlinig innerhalb einer freien Wegl"ange.
+    Durch die nukleare und elektronische Bremskraft verliert das Teilchen Energie.
+    Die Verfolgung der Teilchenbahn terminiert wenn die Energie unter einen bestimmten Wert abgefallen oder das Teilchen das Taregt verlassen hat.
+    Das Target wird als amorph angenommen weshalb kristalline Richtungseigenschaften, wie zum Beispiel das sogenannte Channeling, ignoriert werden.
+
+    Der nukleare und elektronische Energieverlust werden unabh"angig voneinander behandelt.
+    Das Teilchen verliert einen diskreten Betrag der Energie durch Kernst"o"se und kontinuierlich auf Grund der elektronischen Bremskraft.
+
     \subsection{Strahlensch"aden und Amorphisierung}
+
+    Durch die Bestrahlung des Targets werden Sch"aden im Kristallgitter hervorgerufen.
+    Dabei werden Targetatome durch St"o"se mit Ionen verlagert, oder durch St"o"se durch bereits angesto"sene Atome, sogenannten Recoils, wenn diese mindestens die Verlagerungsenergie $E_d$ besitzen.
+    Im letzten Fall spricht man auch von Verlagerungskaskaden.
+    So entstehen Leerstellen und Zwischengitteratome, sogenannte Frenkeldefekte, und komplexere Gitterdefekte, sogenannte Cluster.
+    Mit steigender Dosis beginnen gest"orte Gebiete zu "uberlappen was zu einer Ausbildung einer amorphen Schicht f"uhren kann.
+    Die Anzahl und Verteilung der Strahlensch"aden h"angt dabei von Temperatur, Energie und Masse der implantierten Ionen sowie der Masse der Targetatome ab.
+    Ein Ma"s f"ur die Konzentration der Strahlensch"adigung ist der Energieanteil, der in Form von Kernwechelswirkung an den Festk"orper abgegeben wurde \cite{brice1,brice2}.
+    Dieser ist prportional zu den erzeugten Leerstellen und komplexeren Defekten im Target \cite{stein_vook_borders}.
+
+    Die in einem prim"aren Sto"s verlagerten Atome, durch ein Ion der Energie $E$, kann nach Kinchin Pease \cite{kinchin_pease} zu
+    \[
+    N_{p,d} = \frac{E}{E_d}
+    \]
+    abgesch"atzt werden.
+
+    Gleichzeitig heilen Defekte aus, indem verlagerte Gitteratome an ihren Gitterplatz zur"uckkehren.
+    Bei der thermischen Defektausheilung wird dies durch die thermisch erh"ohte Mobilit"at der Defekte erm"oglicht.
+    Andererseits kann der Ionenstrahl selbst zur Defektausheilung beitragen.
+    Dieser kann an amorph-kristallinen Grenzfl"achen Rekristallisation beg"unstigen oder auch zur Bildung von Kristallisationskeimen in amorphen Gebieten f"uhren.
+
+