finished elektrronische BK
[lectures/latex.git] / nlsop / diplom / grundlagen.tex
index cc09080..c3000d9 100644 (file)
     Die in den Festk"orper implantierten Ionen sto"sen mit den Atomkernen und Elektronen des Targets.
     Dieser Streuprozess ist mit einem Energieverlust und einer Richtungs"anderung des Ions verbunden.
     Das Ion f"uhrt weitere St"o"se aus bis dessen Energie zu klein f"ur weitere Sto"sprozesse ist.
+    Die Abbremsung der Ionen durch St"o"se mit den Atomkernen bezeichnet man als nukleare Bremskraft, die mit den Elektronen als elektronische Bremskraft.
 
       \subsubsection{Bremsquerschnitt}
 
       Zur Beschreibung der nuklearen Bremskraft muss der Energie"ubertrag zwischen einem bewegten und einem station"aren geladenen Teilchen betrachtet werden.
       Dieser h"angt ab von Geschwindigkeit und Richtung des bewegten Teilchens, sowie von Masse und Ladung beider Teilchen und damit einem interatomaren Potential.
       Die letztendlichen Geschwindigkeiten und Trajektoren k"onnen mit Hilfe der Energie- und Impulserhaltung f"ur einfache Potentiale analytisch gel"ost werden.
+      Es werden nur elastische St"o"se betrachtet, inelatische St"o"se mit den Atomkernen k"onnen vernachl"assigt werden.
+      Da die nukleare Bremskraft sehr wichtig f"ur die weitere Arbeit ist, wird auf ihre Herleitung etwas genauer eingegangen.
 
       Zun"achst soll die klassische elastische Streuung zweier K"orper behandelt werden. 
       Dabei ist das ruhende Teilchen der Atomkern, das einfallende Teilchen das implantierte Ion (Abbildung \ref{img:scatter_lc}).
       Mit Hilfe dieser Gleichung kann der Streuwinkel "uber die Schwerpunktsenergie $E$, dem Potential $V(r)$ und dem Stossparameter $p$ bestimmt werden.
       Der durschnittliche Energie"ubertrag kann nun durch Einsetzen von \eqref{eq:theta_of_p} in \eqref{eq:final_delta_e} und Integration "uber alle $p$ bestimmt werden.
 
-      F"ur das interatomare Potential $V(r)$ \ldots
+      F"ur das interatomare Potential $V(r)$ wird oft ein abgeschirmtes Coulomb-Potential verwendet \cite{ziegler_biersack_littmark}.
+      \[
+      V(r) = \frac{Z_1 Z_2 e^2}{4 \pi \epsilon_0 r} \Phi(\frac{r}{a})
+      \]
+      Dabei ist $\Phi$ eine geeignete Abschirmfunktion und $a$ der sogenannte Abschirmparameter in der Gr"o"senordnung des Bohrradius.
+     Die besten "Ubereinstimmungen mit dem Experiment erh"alt man durch Verwendung des sogenannten \dq universal potential\dq{} \cite{ziegler_biersack_littmark}, dass von Ziegler et al. mit verbesserten Methoden, unter anderem dem Anfitten von Daten zahlreicher Ion-Target-Kombinationen an die Abschirmfunktion, eingef"uhrt wurde.
 
       \subsubsection{Elektronische Bremskraft}
 
+      Der elektronische Energieverlust der Ionen an den Elektronen des Targets kommt haupts"achlich durch inelastische Streuung zustande.
+      Dies f"uhrt zur Anregung beziehungsweise Ionisation des Targets.
+      Die elektronische Bremskraft ist abh"angig von der Energie der Ionen.
+      Verschiedene Theorien beschreiben die Abbremsung unterschiedlich schneller Ionen.
+      Da in dieser Arbeit nur niedrige Projektilenergien (kleiner $0,1 Mev/amu$) behandelt werden, sollen Theorien f"ur den Hochenergiebereich hier nicht diskutiert werden.
+      F"ur hohe, nicht-relativistische Energien m"usste die Bethe-Bloch-Gleichung \cite{bethe_bloch} zur Beschreibung des elektronischen Energieverlusts herangezogen werden.
+      Zus"atzliche relativistische Effekte f"uhren zu einem Anstieg der Bremskraft bei noch h"oheren Energien.
+
+      F"ur niedrige Teilchengeschwindigkeiten kann die elektronische Abbremsung mit Hilfe der LSS-Theorie \cite{lss} beschrieben werden.
+      Die Bremskraft ist proportional zur Geschwindigkeit, also proportional zur Wurzel aus der Energie des Ions.
+      \begin{equation}
+      S_e(E) = k_L \sqrt{E}
+      \end{equation}
+      Die Proportionalit"atskonstante $k_L$ ist ein geschwindigkeitsunabh"angiger Ausdruck und beachtet die Abh"angigkeit der Bremskraft von der Kernladungszahl des Ions und der Targetatome.
+      Schaleneffekte und damit verbundene Oszillationen in der Abh"angigkeit der Kernladungszahl k"onnen durch einen weiteren Faktor $k_F$, den LSS-Korrekturfaktor, der durch experimentelle Ergebnisse angepasst wurde, beachtet werden.
+      In \cite{ziegler_biersack_littmark} wird eine Theorie vorgestellt die auch die Oszillationen erkl"art.
+      Dabei werden alle Bremskr"afte auf experimentell genau bekannte Wasserstoff-Bremskr"afte fuer jedes Element zur"uckgef"uhrt.
+      Die Wasserstoff-Bremskr"afte werden mittels der Brandt-Kitagawa-Theorie f"ur schwere Ionen im gleichen Target skaliert.
+
     \subsection{Implantationsprofil}
 
+    
+
+    \subsection{Die Monte-Carlo-Simulation {\em TRIM}}
+
     \subsection{Strahlensch"aden und Amorphisierung}