more updates ...
[lectures/latex.git] / nlsop / diplom / modell.tex
index 5533bbc..78563c2 100644 (file)
@@ -1 +1,47 @@
 \chapter{Modell}
+\label{chapter:modell}
+
+  %\section{Formulierung des Modells}
+
+  Im Folgenden soll auf das Modell zur Bildung dieser geordneten amorphen Ausscheidungen eingegangen werden.
+  Es wurde erstmals in \cite{vorstellung_modell} vorgestellt.
+  Die Idee des Modells ist schematisch in Abbildung \ref{img:modell} gezeigt.
+  \begin{figure}[h]
+  \includegraphics[width=12cm]{model1_s_german.eps}
+  \caption{Schematische Abbildung des Modells zur Erkl"arung der Selbstorganisation amorpher $SiC_x$-Ausscheidungen und ihre Entwicklung zu gerodneten Lamellen auf Grund vorhandener Druckspannungen mit zunehmender Dosis in $C^+$-implantierten Silizium}
+  \label{img:modell}
+  \end{figure}
+
+  Die Implantation unter den oben genannten Bedingungen f"uhrt bei sehr hohen Dosen zur Bildung einer amorphen Phase.
+  Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoff Ionen im Silizium ist bei den gegebenen Temperaturen keine Amorphisierung zu erwarten \cite{lindner_appl_phys}.
+  Tats"achlich wurde in \cite{linnross} gezeigt, dass reines amorphes Silizium bei Temperaturen "uber $130 \, ^{\circ} \mathrm{C}$ ionenstrahl-induziert epitaktisch rekristallisiert.
+  Die Amorphisierung bei den gegebenen Temperaturen muss also dem Vorhandensein von Kohlenstoff zugeschrieben werden, der die amorphe Phase stabilisiert \cite{kennedy}.
+  Die Tatsache, dass die $SiC_x$ -Ausscheidungen in amorpher Form vorliegen, l"asst sich durch den Unterschied in der Gitterkonstante von kristallinen Silizium ($a=5,43 \textrm{\AA}$) und kubischen $3C-SiC$ ($a=4,36 \textrm{\AA}$) erkl"aren.
+  Auf Grund des Unterschiedes von fast $20\%$ in der Gitterkonstante, hat die Nukleation von kubischen Siliziumkarbid in kristallinen Silizium eine hohe Grenzfl"achenenergie zur Folge, die in \cite{taylor} zu $2-8 \times 10^{-4} J cm^{-2}$ abgesch"atzt wird.
+  Es ist also energetisch g"unstiger, wenn eine der beiden Substanzen in amorpher Form vorliegt.
+  Energie-gefilterte Transmissionselektronenmikroskopie \cite{eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist.
+  Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst weit "uber der Rekristallisationstemperatur stabil sind.
+  Bei l"angeren Tempervorg"angen bei  $900 \, ^{\circ} \mathrm{C}$ entstehen geordnete Ketten von abwechselnd amorphen und kristallinen $3C-SiC$ Ausscheidungen, was nochmal die kohlenstoffreiche Natur der amorphen Phase zeigt.
+  Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinen Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt.
+  Dieser, zur Amorphisierung beitragende Mechanismus, wird im Folgenden als kohlenstoffinduzierte Amorphisierung bezeichnet.
+
+  Amorphes $SiC$ ($a-SiC$) hat eine $20$ bis $30\%$ geringere Dichte im Vergleich zu kubischen Siliziumkarbid ($3C-SiC$) \cite{horton,skorupa}.
+  Dasselbe wird f"ur die Dichte von nicht st"ochiometrischen $SiC_x$ zu kristallinen Silizium ($c-Si$) angenommen.
+  Die amorphen Gebiete sind demnach bestrebt sich auszudehnen und "uben Druckspannungen auf die kristalline Umgebung aus.
+  Diese sind in Abbildung \ref{img:modell} durch die von $R$ ausgehenden Pfeile dargestellt.
+  Da sich die Ausscheidungen relativ nah an der Oberfl"ache des Targets befinden, kann der vertikale Anteil der Spannungen durch Expansion des Targets relaxieren.
+  Dies gilt nicht f"ur die horizontale Komponente.
+  Es verbleiben laterale Druckspannungen parallel zur Oberfl"ache.
+  Diese beg"unstigen Amorphisierung in der Nachbarschaft der Ausscheidung, da im Falle einer Sto"skaskade die versetzten Atome auf Grund der vorhandenen Spannungen nur erschwert auf ihre regul"aren Gitterpl"atze zur"uckkehren k"onnen.
+  Im Gegensatz dazu wird $a-Si$ in einer kristallinen Nachbarschaft unter den gegebenen Bedingungen sehr wahrscheinlich rekristallisieren.
+  Dieser Amorphisierungsbeitrag wird im Folgenden als spannungsinduzierte Amorphisierung bezeichnet.
+
+  Zus"atzlich dienen die amorphen Gebiete als Senke f"ur Kohlenstoff, der von der kristallinen Umgebung in die amorphe Ausscheidung diffundieren kann.
+  Die kristallinen Gebiete reduzieren damit die "Ubers"attigung mit Kohlenstoff, dessen L"oslichkeit in $c-Si$ bei Raumtemperatur nahezu Null ist.
+  Die amorphen Gebiete reichern sich mit Kohlenstoff an und erh"ohen wiederum die lateralen Spannungen auf die Umgebung.
+  Da in experimentellen Ergebnissen von Implantationen bei weitaus h"oheren Temperaturen \cite{reiber}, bei denen sich keine amorphe Phase bildet, keine Verbreiterung des Kohlenstoffprofils durch Diffusion beobachtet wird, wird Diffusion innerhalb kristalliner Gebiete ausgeschlossen. 
+  
+  Mit zunehmender Dosis bilden sich so durchgehende kohlenstoffreiche amorphe Lamellen.
+  Wegen der Diffusion von Kohlenstoff von den oberhalb und unterhalb dieser Lamellen liegenden Gebieten, rekristallisiert dort zuf"allig amorphisiertes (im Folgenden ballistische Amorphisierung genannt) $a-Si$ mit sehr gro"ser Wahrscheinlichkeit.
+  So entstehen abwechselnd amorphe und kristalline Lamellen.
+