commit often and soon
[lectures/latex.git] / nlsop / diplom / modell.tex
index e3baeca..ed758c8 100644 (file)
   \end{figure}
 
   Auf Grund der niedrigen nuklearen Bremskraft der leichten Kohlenstoff Ionen im Silizium ist unter den weiter oben genannten Bedingungen keine Amorphisierung von reinem Silizium zu erwarten \cite{lindner_appl_phys}.
-  Tats"achlich wurde in \cite{linnross} gezeigt, dass reines amorphes Silizium bei Temperaturen "uber $130 \, ^{\circ} \mathrm{C}$ unter den gegebenen Bedingungen ionenstrahl-induziert epitaktisch rekristallisiert, w"ahrend rein thermische Rekristallisation von amorphen Silizium ($a-Si$) erst oberhalb $550 \, ^{\circ} \mathrm{C}$ erfolgt \cite{csepregi}.
+  Tats"achlich wurde in \cite{linnross} gezeigt, dass reines amorphes Silizium bei Temperaturen "uber $130 \, ^{\circ} \mathrm{C}$ unter den gegebenen Bedingungen ionenstrahlinduziert epitaktisch rekristallisiert, w"ahrend rein thermische Rekristallisation von amorphen Silizium ($a-Si$) erst oberhalb $550 \, ^{\circ} \mathrm{C}$ erfolgt \cite{csepregi}.
   Zuf"allig amorphisierte Gebiete werden demnach mit hoher Wahrscheinlichkeit sehr schnell rekristallisieren.
   Die rein zuf"allige Amorphisierung, f"ur die immer eine geringe Wahrscheinlichkeit besteht, bezeichnet man als ballistische Amorphisierung.
 
   Aus dem vorherigen Kapitel ist bekannt, dass die Implantation unter den oben genannten Bedingungen bei sehr hohen Dosen zur Bildung von amorphen Phasen f"uhrt.
   Die Amorphisierung bei den gegebenen Temperaturen oberhalb $130 \, ^{\circ} \mathrm{C}$ muss also dem Vorhandensein von Kohlenstoff zugeschrieben werden, der die amorphe Phase stabilisiert \cite{kennedy}.
   Die Tatsache, dass die $SiC_x$ -Ausscheidungen in amorpher Form vorliegen, l"asst sich durch den Unterschied in der Gitterkonstante von kristallinem Silizium ($a=5,43 \textrm{\AA}$) und kubischem $3C-SiC$ ($a=4,36 \textrm{\AA}$) erkl"aren.
-  Auf Grund des Unterschiedes von fast $20\%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen Siliziumkarbid-Pr"azipitaten in der kristallinen Silizium-Matrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} J cm^{-2}$ abgesch"atzt wird.
+  Auf Grund des Unterschiedes von fast $20\%$ in der Gitterkonstante, ist f"ur die Nukleation von kubischen $3C-SiC$-Pr"azipitaten in der kristallinen Siliziummatrix eine hohe Grenzfl"achenenergie n"otig, die in \cite{taylor} zu $2-8 \times 10^{-4} J cm^{-2}$ abgesch"atzt wird.
   Es ist also energetisch g"unstiger, wenn eine der beiden Substanzen in amorpher Form vorliegt.
-  Energie-gefilterte Transmissionselektronenmikroskopie \cite{da_martin_s,maik_da,eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist.
+  Energiegefilterte Transmissionselektronenmikroskopie \cite{da_martin_s,maik_da,eftem_tbp} hat gezeigt, dass die amorphe Phase in der Tat kohlenstoffreicher als deren kristalline Umgebung ist.
   Weiterhin best"atigten Temperexperimente \cite{maik_temper}, dass die amorphen Gebiete selbst bei $800 \, ^{\circ} \mathrm{C}$ weit "uber der Rekristallisationstemperatur von $550 \, ^{\circ} \mathrm{C}$ f"ur reines $a-Si$ stabil sind.
-  Bei bis zu $5$ st"undigen Tempervorg"angen bei  $900 \, ^{\circ} \mathrm{C}$ entstehen aus den Lamellen geordnete Ketten von abwechselnd amorphen und kristallinen $3C-SiC$ Ausscheidungen, was nochmal die kohlenstoffreiche Natur der amorphen Phase, gleichzeitig aber auch eine inhomogene Verteilung des Kohlenstoffs in den Lamellen zeigt.
+  Bei bis zu $5$ st"undigen Tempervorg"angen bei  $900 \, ^{\circ} \mathrm{C}$ entstehen aus den Lamellen geordnete Ketten von abwechselnd amorphen und kristallinen $3C-SiC$-Ausscheidungen, was nochmal die kohlenstoffreiche Natur der amorphen Phase, gleichzeitig aber auch eine inhomogene Verteilung des Kohlenstoffs in den Lamellen zeigt.
   Mit zunehmender Dosis wird also eine S"attigungsgrenze von Kohlenstoff in kristallinen Silizium "uberschritten, was zur Nukleation sph"arischer amorpher $SiC_x$-Ausscheidungen f"uhrt.
   Dieser, zur Amorphisierung beitragende Mechanismus, wird im Folgenden als kohlenstoffinduzierte Amorphisierung bezeichnet.