pstricks stuff added, began flowchart
[lectures/latex.git] / nlsop / diplom / simulation.tex
index 5169432..3ab02b8 100644 (file)
@@ -1,6 +1,7 @@
 \chapter{Simulation}
 
   Im Folgenden soll die Implementation der Monte-Carlo-Simulation nach dem vorangegangen Modell diskutiert werden.
 \chapter{Simulation}
 
   Im Folgenden soll die Implementation der Monte-Carlo-Simulation nach dem vorangegangen Modell diskutiert werden.
+  Die Simulation tr"agt den Namen {\em NLSOP}, was kurz f"ur die Schlagw"orter {\bf N}ano, {\bf L}amelle und {\bf S}elbst{\bf O}ragnisations{\bf P}rozess steht.
   Ziel der Simulation ist die Verifizierung des Modells anhand der experimentellen Ergebnisse die in Abbildung \ref{img:xtem_img} vorliegen.
   Die genauen Daten sind:
   \begin{itemize}
   Ziel der Simulation ist die Verifizierung des Modells anhand der experimentellen Ergebnisse die in Abbildung \ref{img:xtem_img} vorliegen.
   Die genauen Daten sind:
   \begin{itemize}
     Jeder W"urfel hat entweder den Zustand amorph (rot) oder ist kristallin (blau).
     Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert.
 
     Jeder W"urfel hat entweder den Zustand amorph (rot) oder ist kristallin (blau).
     Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert.
 
+    Die Ausdehnung des Targets in $x,y$-Richtung ist im Gegensatz zur Tiefe sehr gross und kann als unendlich ausgedehnt angenommen werden.
+    Um die Anzahl der W"urfel in diese Richtungen in der Simulation, aus Gr"unden der Rechenzeit, m"oglichst klein halten zu k"onen, werden periodische Randbedingungen in der $x,y$-Ebene verwendet.
+
     \subsection{Amorphisierung und Rekristallisation}
     \subsection{Amorphisierung und Rekristallisation}
+    \label{subsection:a_and_r}
 
     Nach dem in Kapitel \ref{chapter:modell} vorgestellten Modell gibt es drei zur Amorphisierung beitragende Mechanismen.
     Eine lokale Wahrscheinlichkeit f"ur die Aamorphisierung $p_{c \rightarrow a}$ eines beliebigen kristallinen Volumens $\vec{r}$ setzt sich aus den drei Einzelwahrscheinlichkeiten f"ur die
 
     Nach dem in Kapitel \ref{chapter:modell} vorgestellten Modell gibt es drei zur Amorphisierung beitragende Mechanismen.
     Eine lokale Wahrscheinlichkeit f"ur die Aamorphisierung $p_{c \rightarrow a}$ eines beliebigen kristallinen Volumens $\vec{r}$ setzt sich aus den drei Einzelwahrscheinlichkeiten f"ur die
     Die Parameter sind ebenfalls frei w"ahlbar.
     Diffusion innerhalb kristalliner Gebiete sowie Diffusion innerhalb amorpher Gebiete wird ausgeschlossen.
 
     Die Parameter sind ebenfalls frei w"ahlbar.
     Diffusion innerhalb kristalliner Gebiete sowie Diffusion innerhalb amorpher Gebiete wird ausgeschlossen.
 
+    Prinzipiell sollte man den Kohlenstoff"ubertrag abh"angig von dem bereits vorhandenen Kohlenstoff in dem amorphen Volumen bestimmen.
+    Da die implantierte Dosis maximal die St"ochiometridosis und der Parameter $d_r$ gro"s genug gew"ahlt ist, kommt es nicht zur "Ubers"attigung.
+    Der Kohlenstoff in kristallinen Gebieten ist also immer bestrebt in amorphe Gebiete zu diffundieren um die sehr viel geringere S"attigung im Kristallinen zu reduzieren.
+
     \subsection{Sputtern}
 
     Es wird von einer, "uber der Oberfl"ache gleichm"assig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen.
     \subsection{Sputtern}
 
     Es wird von einer, "uber der Oberfl"ache gleichm"assig verteilten und w"ahrend des Implantationsvorgangs konstanten Sputterrate ausgegangen.
 
   \section{Auswertung von {\em TRIM} Ergebnissen}
 
 
   \section{Auswertung von {\em TRIM} Ergebnissen}
 
-  Da bereits Programme wie {/em TRIM} die Wechelswirkung der Ionen mit dem Target simulieren und somit ein geeignetes Bremskraft- und Implantationsprofil sowie eine genaue Buchf"uhrung "uber die Sto"skaskaden bereitstellen, wird auf diese Schritte in der Simulation aus Zeitgr"unden verzichtet.
-    Stattdessen werden die von {/em TRIM} erzeugten Statistiken verwendet.
-    Durch die Abbildung von Zufallszahlen auf die so erhaltenen Verteilungen, k"onnen die eigentlichen physikalischen Prozesse sehr schnell und einfach behandelt werden.
-    Im Folgenden wird auf die Ermittlung einiger, f"ur diese Simulation wichtigen, Statistiken eingegangen.
+  Da bereits Programme wie {\em TRIM} die Wechelswirkung der Ionen mit dem Target simulieren und somit ein geeignetes Bremskraft- und Implantationsprofil sowie eine genaue Buchf"uhrung "uber die Sto"skaskaden bereitstellen, wird auf diese Schritte in der Simulation aus Zeitgr"unden verzichtet.
+  Stattdessen werden die von {\em TRIM} erzeugten Statistiken verwendet.
+  Durch die Abbildung von Zufallszahlen auf die so erhaltenen Verteilungen, k"onnen die eigentlichen physikalischen Abl"aufe sehr schnell und einfach behandelt werden.
+  Im Folgenden wird auf die Ermittlung einiger, f"ur {\em NLSOP}  wichtige, Statistiken eingegangen.
 
     \subsection{Implantationsprofil und nukleare Bremskraft}
 
     \subsection{Implantationsprofil und nukleare Bremskraft}
-   
-    Abbildung /ref{img:bk_impl_p} zeigt von {/em TRIM} ermittelte nukleare und elektronische Bremskraft
 
 
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{2pTRIM180C.eps}
+    \caption{Von {\em TRIM} ermittelte Reichweitenverteilung und tiefenabh"angige Bremskr"afte f"ur $180 keV$ $C^+ \rightarrow Si$}
+    \label{img:bk_impl_p}
+    \end{figure}
+    Abbildung \ref{img:bk_impl_p} zeigt die von {\em TRIM} ermittelte nukleare und elektronische Bremskraft sowie das Kohlenstoffkonzentrationsprofil f"ur die in dieser Arbeit verwendeten Parameter.
+    Die gestrichelte Linie markiert das Implantationsmaximum.
+    Sputtereffekte und Abweichungne auf Grund der kontinuierlich ver"anderten Targetzusammensetzung w"ahrend der Hochdosisimplantation werden hier allerdings nicht ber"ucksichtigt.
+    
+    Die Profile werden von {\em TRIM} selbst in seperate Dateien geschrieben.
+    Tauscht man die Kommata (Trennung von Ganzzahl und Kommastelle) durch Punkte aus, so kann {\em NLSOP} diese Dateien auslesen und die Profile extrahieren.
+    
     \subsection{Durchschnittliche Anzahl der St"o"se der Ionen und Energieabgabe}
     \label{subsection:parse_trim_coll}
 
     \subsection{Durchschnittliche Anzahl der St"o"se der Ionen und Energieabgabe}
     \label{subsection:parse_trim_coll}
 
+    Weiterhin legt {\em TRIM} eine Datei Namens {\em COLLISION.TXT} an, in der s"amtliche durch jedes Ion verursachte Sto"skaskaden protokolliert sind.
+    Zu jedem Sto"s sind Koordinaten und Energie"ubertrag angegeben.
+    Mit einem zur {\em NLSOP} Suite geh"orendem Programm kann diese Datei ausgewertet werden.
+    Die Daraus gewonnen Ekenntnisse sollen im Folgenden diskutiert werden.
+
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{trim_coll.eps}
+    \caption{Auf das Maximum 1 skalierte tiefenabh"angige Energieabgabe (blau) und Anzahl der Kollisionen (rot)}
+    \label{img:trim_coll}
+    \end{figure}
+    Abbildung \ref{img:trim_coll} zeigt die Energieabgabe und Anzahl der St"o"se von Ionen und Recoils in Abh"angigkeit der Tiefe.
+    Beide Graphen wurden auf das selbe Maximum skaliert.
+    Man erkennt, dass diese nahezu identisch sind.
+    Die durchschnittliche Energieabgabe durch einen Sto"s ist also ungef"ahr konstant und unabh"angig von der Tiefe.
+    Dies ist der Grund f"ur die Wahl eines konstanten Beitrags der ballistischen Amorphisierung in Abschnitt \ref{subsection:a_and_r}.
+    Jeder Sto"s "ubertr"agt durchschnittlich einen konstanten Energiebetrag im Falle einer Kollision, und tr"agt somit einen konstanten Anteil zur Amoprhisierungswahrscheinlichkeit bei.
+    
+    Desweiteren ist nun die Wahrscheinlichkeit f"ur eine Kollision in einer bestimmten Tiefe bekannt.
+    Sie entspricht der nuklearen Bremskraft.
+
+    \begin{figure}[h]
+    \includegraphics[width=12cm]{trim_nel.eps}
+    \caption{Durch {\em TRIM} berechneter nuklearer Energieverlust f"ur $180 keV$ $C^+ \rightarrow Si$}
+    \label{img:trim_nel}
+    \end{figure}
+    Zum Vergleich zeigt Abbildung \ref{img:trim_nel} die von {\em TRIM} selbst berechnete nukleare Bremskraft.
+    Wie zu erwarten entspricht sie ungef"ahr dem Verlauf der in Abbildung \ref{img:trim_coll} gezeigten Energieabgab.
+    Der Unterschied liegt daran, dass letzteres Profil durch eine gr"ossere Anzahl von {\em TRIM}-Simulationsschritten ermittelt wurde.
+    Dieses Profil wird f"ur {\em NLSOP} benutzt.
+
+    Ein implantiertes Ion und dadurch entstandene Recoils verursachen jedoch mehr als nur eine Kollision mit den Targetatomen bis es zur Ruhe kommt.
+    Nach dem Auswertungsprogramm hat ein Ion durchschnittlich eine Anzahl von $1088$ Kollisionen bei den gegebenen Bedingungen zur Folge.
+    Die Zahl der getroffenen W"urfel, also Volumina in denen ein Ion mindestens eine Kollision verursacht, ist sehr viel geringer.
+    Das Auswertungsprogramm z"ahlt durchschnittlich $75$ getroffene Volumina pro implantierten Ion.
+    Genauer gesagt z"ahlt das Programm die Anzahl der Ebenen mit $3 nm$ H"ohe in denen Kollisionen verursacht werden.
+    Teilchenbahnen parallel zur Targetoberfl"ache verf"alschen diese Zahl also.
+    Ausserdem werden mehrmalige Durchl"aufe der Ebenen nicht mitgez"ahlt.
+    Man sollte weiterhin beachten, dass Volumina in denen selbst nur eine Kollision stattfindet mitgez"ahlt werden, was allerdings nur sehr unwahrscheinlich zur Amorphisierung f"uhren wird.
+    Daher wird eine Trefferzahl von $h=100$ f"ur die Simulation angenommen.
+
   \section{Simulationsalgorithmus}
 
   \section{Simulationsalgorithmus}
 
+  Die Simulation kann in drei Abschnitte geliedert werden.
+  Die beschriebenen Prozeduren werden sequentiell abgearbeitet und beliebig oft durchlaufen.
+
+  Wenn pro Durchlauf die Anzahl der simulierten Sto"skaskaden gleich der Anzahl der getroffenen Volumina ist, entspricht ein Durchlauf genau einem implantierten Ion.
+  Im Folgenden sei die Anzahl der W"urfel in $x$, $y$ und $z$ Richtung $X$, $Y$ und $Z$.
+  Eine Anzahl von $N$ Durchl"aufen ist damit "aquivalent zur Dosis $D$, die wie folgt gegeben ist:
+  \begin{equation}
+  D = \frac{N}{XY(3 nm)^2} \, \textrm{.}
+  \end{equation}
+
+  Es wird mit einem komplett kristallinen und kohlenstofffreien Target gestartet.
+
     \subsection{Amorphisierung und Rekristallisation}
     \subsection{Amorphisierung und Rekristallisation}
+    \label{subsection:a_r_step}
+
+    Im ersten Schritt sollen die Kollisionen und die daraus resultierende Amorphisierung beziehungsweise Rekristallisation simuliert werden.
+    Zun"achst muss das gestossene Volumen ausgew"ahlt werden.
+    Die St"o"se sind bez"uglich der $x$ und $y$ Richtung statistisch isotrop verteilt.
+    Zun"achst werden zwei gleichverteilte Zufallszahlen $r_1 \in [0,X[$ und $r_2 \in [0,Y[$ nach \eqref{eq:gleichverteilte_r} ausgew"urfelt.
+    Diese werden auf die ganzen Zahlen $k$ und $l$ abgebildet und bestimmen die Lage des getroffenen Volumens in der $x,y$-Ebene.
+    Eine weitere, mit Hilfe der Verwerfungsmethode aus Abschnitt \ref{subsubsection:verwerf_meth} erzeugte Zufallszahl $r_3 \in [0,Z[$ entsprechend der nuklearen Bremskraft, abgebildet auf die ganze Zahl $m$, legt die Tiefe des getroffenen Volumens fest.
+    Somit hat man den Otrsvektor $\vec{r}(k,l,m)$ f"ur den Amorphisierungs- oder Rekristallisationsvorgang festgelegt.
+    Nun kann die Amorphisierungs- beziehungsweise Rekristallisationswahrscheinlichkeit nach \eqref{eq:p_ca_local} beziehungsweise \eqref{eq:p_ac_genau} berechnet werden.
+    Eine weitere Zufallszahl $r_4 \in [0,1[$ entscheidet dann "uber einen eventuellen Statuswechsel des Volumens.
+    Es gibt folgende M"oglichkeiten:
+    \begin{enumerate}
+    \item Volumen $\vec{r}(k,l,m)$ ist kristallin.\\
+          Wenn $r_4$ kleiner gleich $p_{c \rightarrow a}$ ist, wechselt der Status zu Amorph.
+         Ansonsten bleibt der Status unver"andert.
+    \item Volumen $\vec{r}(k,l,m)$ ist amorph.\\
+          Wenn $r_4$ kleiner gleich $p_{a \rightarrow c}$ ist, wechselt der Status zu Kristallin.
+         Ansonsten bleibt der Status unver"andert.
+    \end{enumerate}
+
+    Der Amorphisierungs- und Rekristallisationsschritt wird f"ur die Anzahl der getroffenen Volumina pro implantierten Ion $h$ wiederholt.
 
     \subsection{Einbau des implantierten Kohlenstoffs ins Target}
 
 
     \subsection{Einbau des implantierten Kohlenstoffs ins Target}
 
+    Nachdem das Ion die Sto"sprozesse beendet hat, kommt es im Target zur Ruhe.
+    Die Wahl des Volumens in dem das passiert ist analog zur Wahl des getroffenen Volumens.
+    Jedoch wird die Tiefe durch eine Zufallszahl, deren Wahrscheinlichkeitsverteilung der Reichweitenverteilung entspricht, bestimmt.
+    Zur Erzeugung der Zufallszahl wird wieder die in \ref{subsubsection:verwerf_meth} beschriebene Verwerfungsmethode benutzt.
+
+    In dem ausgew"ahlten W"urfel $\vec{r}(k,l,m)$ wird der Z"ahler f"ur den Kohlenstoff um eins erh"oht.
+
     \subsection{Diffusion und Sputtern}
 
     \subsection{Diffusion und Sputtern}
 
+    Die Diffusions-Routine ist wie folgt realisiert.
+    Die Simulation geht der Reihe nach alle Volumina durch.
+    Im Falle eines amorphen Volumens werden aus direkt anliegenden kristallinen Volumen der Anteil $d_r$ des Kohlenstoffs abgezogen und zu dem amorphen Volumen addiert.
+    Da nur ganze Atome "ubertragen werden k"onnen wird der Betrag auf die n"achst kleinere ganze Zahl abgerundet.
+    Dieser Diffusionsvorgang wird alle $d_v$ Schritte ausgef"uhrt.
+
+    Die Sputter-Routine wird nach der Dosis, die einem Abtrag von $3 nm$ enstpricht ausgef"uhrt.
+    Der Zusammenhang zwischen Sputterrate $S$ und Anzahl der Simulationsdurchl"aufe $n$ ist demnach wie folgt gegeben:
+    \begin{equation}
+    S = \frac{(3 nm)^3 XY }{n} \quad \textrm{.}
+    \end{equation}
+    Nach $n$ Simulationsdurchl"aufen wird eine kohlenstofffreie, kristalline Ebene von unten her eingeschoben.
+    Dies geschieht wie folgt.
+    Der Inhalt der Eben $i$ wrd auf die Ebene $i-1$ (f"ur $i = Z, Z-1, \ldots, 2$) "uberschrieben.
+    Die Information der obersten Ebene $i=1$ geht dabei verloren.
+    Diese entspricht der abgetragenen Ebene.
+    Die Ebene $i=Z$ erh"alt kristallinen Status und die Kohlenstoffkonzentration Null.
+
+    Dies macht allerdings nur Sinn wenn das Implantationsprofil und die nukleare Bremskraft f"ur die Ebenen tiefer $Z$ auf Null abgefallen ist, um kristalline, kohlenstofffreie Ebenen zu garantieren.
+
+    Die Sputterrate kann durch {\em TRIM} bestimmt werden.
+    Bei den gegebenen Bedingungen werden ungef"ahr $50 nm$ des Targets bei einer Dosis von $4,3 \times 10^{-17} cm^{-2}$ abgetragen.
+
   \section{Simulierte Tiefenbereiche}
 
   \section{Simulierte Tiefenbereiche}
 
+  Wie bereits erw"ahnt gibt es zwei verschiedene Versionen des Programms, die verschiedene Tiefenbereiche, im Folgenden Simulationsfenster genannt, simulieren.
+
+  Da in erster Linie der Selbstorganisationsprozess der lamellaren Ausscheidungen an der vorderen Grenzfl"ache der amorphen $SiC_x$-Schicht simuliert werden soll, ist der Tiefenbereich der ersten Version gerade bis zu Beginn der durchgehenden Schicht.
+  Dies entspricht einer Tiefe von ungef"ahr $300 nm$, und somit einer Anzahl von $Z=100$ W"urfeln in $z$-Richtung.
+
+  Wie in \ref{img:bk_impl_p} gut zu erkennen ist, kann in diesem Tiefenbereich sowohl die Reichweitenverteilung als auch die nukleare Bremskraft durch eine von der Tiefe linear abh"angige Funktion gen"ahert werden.
+  Daher ergeben sich "Anderungen zu den im vorigen Abschnitt erkl"arten Methoden zur Wahl des Volumens in dem ein Sto"sprozess beziehungsweise eine Kohlenstofferh"ohung stattfindet.
+
+  Die Zufallszahl $z$, die auf die Tiefen-Koordinate $m$ abgebildet wird, muss der Verteilung $p(z)dz = (sz + s_0)dz$ gen"ugen.
+  Dabei sind $s$ unnd $s_0$ die linear gen"aherte nukleare Bremskraft beschreibende Simulationsparameter.
+  Die Transformation wird wie in Abschnitt \ref{subsubsection:lin_g_p} beschrieben durchgef"uhrt.
+  Dasselbe betrifft die Wahl der Tiefen-Koordinate f"ur den Einbau des Kohlenstoffatoms.
+  Anstatt der Wahrscheinlichkeitsverteilung der nuklearen Bremskraft entsprechend wird das linear gen"aherte Implantationsprofil verwendet.
+  Ausserdem wird nicht nach jedem Durchlauf ein Ion im Simulationsbereich zur Ruhe kommen.
+  Da das Maximum der Reichweitenverteilung sehr viel tiefer liegt werden die meisten Ionen ausserhalb des Simulationsfensters stehen bleiben.
+  Daher wird immer nur dann ein Ion eingebaut, wenn der im Simulationsbereich vorhandene Kohlenstoff $n_c$ kleiner als die Anzahl der Durchl"aufe $n$ multipliziert mit dem Verh"altnis der Fl"ache der Implantationskurve $I(x)$ bis $300 nm$ zur Fl"ache der gesamten Implantationskurve ist.
+  \begin{equation}
+  n_c < n \frac{\int_0^{300 nm} I(x) dx}{\int_0^{\infty} I(x) dx}
+  \end{equation}
+
+  Da sowohl die Reichweitenverteilung als auch die nukleare Bremskraft in Ebenen gr"osser $Z$ ungleich Null ist kann Sputtern nicht beachtet werden.
+  Der Diffusionsprozess ist uneingeschr"ankt "moglich.
+
+  In der zweiten Version wird die gesamte Implantationstiefe simuliert.
+  Das Simulationsfenster geht von $0-700 nm$.
+  Dies entspricht einer Anzahl $Z=233$ von W"urfeln in $z$-Richtung.
+
+  Die Tiefen-Koordinaten f"ur den Sto"sprozess und die Kohelnstoffinkorporation werden wie in Abschnitt \ref{subsection:a_r_step} beschrieben nach der Verwerfungsmethode entsprechend dem nuklearen Bremskraftprofil und der Reichweitenverteilung gewonnen.
+
+   Da sowohl der nukleare Energieverlust und die Kohlenstoffkonzentration in Ebenen gr"osser $Z$ auf Null abgesunken ist, kann die Sputterroutine ausgef"uhrt werden.
+   Der Diffusionsprozess ist ebenfalls uneingeschr"ankt m"oglich.
+
   \section{Test der Zufallszahlen}
 
   \section{Test der Zufallszahlen}
 
+  F"ur vern"unftige Ergebnisse muss die Qualit"at der Zufallszahlen gesichert sein.
+  Es gibt viele statistische Tests eine Zahlenfolge auf ihre Verteilung beziehungsweise Zuf"alligkeit zu "uberpr"ufen.
+
+  Im Folgenden soll nur kontrolliert werden, dass f"ur gleichverteilte Zufallszahlen keine lokalen Anh"aufungen von Zahlen existieren.
+  Desweiteren werden die Methoden zur Erzeugung spezieller Wahrscheinlichkeitsverteilungen durch Vergleich der H"aufigkeit auftretender Zufallszahlen mit dem gew"unschten Verlauf "uberpr"uft.
+
+  Dazu werden f"ur die unterschiedlichen Verteilungen jeweils 10 Millionen Zufallszahlen zwischen $0$ und $232$ erzeugt und auf die n"achst kleinere ganze Zahl abgerundet.
+  Ein einfaches Script-Programm z"ahlt die H"aufigkeit der einzelnen Zufallszahlen der Zufallszahlensequenz.
+
+  \begin{figure}[h]
+  \includegraphics[width=12cm]{random.eps}
+  \caption{H"aufigkeit ganzzahliger Zufallszahlen unterschiedlicher Wahrscheinlichkeitsverteilungen. F"ur jede Verteilung wurden 10 Millionen Zufallszahlen ausgew"urfelt.}
+  \label{img:random_distrib}
+  \end{figure}
+  Abbildung \ref{img:random_distrib} zeigt die H"aufigkeit von Zufallszahlen zwischen $0$ und $232$, abgerundet auf die n"achst kleinere ganze Zahl, f"ur unterschiedliche Wahrscheinlichkeitsverteilungen.
+  
+  Die blauen Punkte zeigen die Gleichverteilung nach \eqref{eq:gleichverteilte_r}.
+  Man erkennt keine lokalen Anh"aufungen.
+
+  Die roten Punkte zeigen die H"aufigkeit der Zufallszahlen bei Verwendung einer linear steigenden Wahrscheinlichkeitsverteilung wie in Abschnitt \ref{subsubsection:lin_g_p} beschrieben.
+  Dabei wurde $a=1$, $b=0$ und $Z=233$ gew"ahlt.
+  Wie erwartet zeigen die Punkte einen linearen Verlauf.
+
+  Die H"aufigkeit der mit der Verwerfungsmethode erzeugten Zufallszahlen entsprechend der nuklearen Bremskraft (gr"un) und dem Implantationsprofil (schwarz) stimmen sehr gut mit den Profilen in Abbildung \ref{img:bk_impl_p} "uberein.
+
   \section{Ablaufschema}
 
   \section{Ablaufschema}
 
+  Das Ablaufshema ist wie der Simulationsalgorithmus aus drei Teilen zusammengesetzt.
+  Abbildung \ref{img:flowchart1} zeigt das Ablaufshema des Amorphisierungs- und Rekristallisationvorgangs.
+
+  \begin{figure}[h]
+  \begin{pspicture}(0,0)(12,10)
+    \rput(6,10){\rnode{nlsop_start}{\psframebox{{\em NLSOP} Start}}}
+
+    \rput(6,9){\rnode{koord_wahl}{\psframebox{Zuf"allige Wahl der Koordinaten $k$, $l$ und $m$}}}
+    \ncline[]{->}{nlsop_start}{koord_wahl}
+
+    \rput(6,8){\rnode{berechnung_pca}{\psframebox{Berechnung von $p_{c \rightarrow a}(\vec{r}(k,l,m))$ und $p_{a \rightarrow c}(\vec{r}(k,l,m))$}}}
+    \ncline[]{->}{koord_wahl}{berechnung_pca}
+
+    \rput(6,7){\rnode{status}{\psframebox{Volumen $\vec{r}(k,l,m)$ amorph?}}}
+    \ncline[]{->}{berechnung_pca}{status}
+
+    \rput(3,5){\rnode{cryst}{\psframebox[linestyle=solid,linecolor=blue]{Zufallszahl $\le p_{c \rightarrow a}$?}}}
+    \rput(9,5){\rnode{amorph}{\psframebox[linestyle=solid,linecolor=red]{Zufallszahl $\le p_{a \rightarrow c}$?}}}
+    \ncline[]{->}{status}{cryst}
+    \lput*{0}{nein}
+
+    \ncline[]{->}{status}{amorph}
+    \lput*{0}{ja}
+
+    \rput(3,3){\rnode{do_amorph}{\psframebox[linestyle=solid,linecolor=red]{Setze Volumen amorph}}}
+    \ncline[]{->}{cryst}{do_amorph}
+    \lput*{0}{ja}
+
+    \rput(9,3){\rnode{do_cryst}{\psframebox[linestyle=solid,linecolor=blue]{Setze Volumen kristallin}}}
+    \ncline[]{->}{amorph}{do_cryst}
+    \lput*{0}{ja}
+
+    \rput(6,2){\rnode{check_h}{\psframebox{Anzahl der Durchl"aufe gleich Anzahl der Treffer pro Ion?}}}
+
+    \rput(7,5){\pnode{h_2}}
+    \ncline[]{amorph}{h_2}
+    \ncline[]{->}{h_2}{check_h}
+    \lput*{0}{nein}
+
+    \rput(5,5){\pnode{h_3}}
+    \ncline[]{cryst}{h_3}
+    \ncline[]{->}{h_3}{check_h}
+    \lput*{0}{nein}
+
+    \rput(12,2){\pnode{h_4}}
+    \rput(12,9){\pnode{h_5}}
+    \ncline[]{check_h}{h_4}
+    \ncline[]{h_4}{h_5}
+    \lput*{0}{nein}
+    \ncline[]{->}{h_5}{koord_wahl}
+
+    \ncline[]{->}{do_cryst}{check_h}
+    \ncline[]{->}{do_amorph}{check_h}
+
+    \rput(12,2){\pnode{h_1}}
+    %\ncline[]{check_h}{h_1}
+
+    \rput(6,0){\rnode{weiter_1}{\psframebox{weiter mit Kohlenstoffeinbau \ldots}}}
+    \ncline[]{->}{check_h}{weiter_1}
+    \lput*{0}{ja}
+  \end{pspicture}
+  \caption{{\em NLSOP} Ablaufshema des Amorphisierungs- und Rekristallisationsschritts}
+  \label{img:flowchart1}
+  \end{figure}
+
+  %In Abbildung \ref{img:flowchart2} ist der Einbau des Kohlenstoffions shematisch aufgezeigt.
+
+
+  %Abbildung \ref{img:flowchart3} beinhaltet den Diffusions- und Sputervorgang.
+