ci often and soon
[lectures/latex.git] / nlsop / diplom / simulation.tex
index 792a9b0..5aca4ca 100644 (file)
@@ -19,7 +19,7 @@ Der Einbau des Kohlenstoffs im Target wird im zweiten Schritt ausgef"uhrt.
 Als letztes wird die Diffusion von Kohlenstoff von kristallinen in amorphe Gebiete und der Sputtervorgang realisiert.
 
 Im Folgenden werden der Simulationsalgorithmus und die dazu ben"otigten Annahmen besprochen.
-Ein weiterer Abschnitt besch"aftigt sich mit der Extraktion von, f"ur die Simulation notwendigen Informationen aus {\em TRIM}-Ergebnissen.
+Ein weiterer Abschnitt besch"aftigt sich mit der Extraktion von, f"ur die Simulation notwendigen, Informationen aus {\em TRIM}-Ergebnissen.
 Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
 
   \section{Annahmen der Simulation}
@@ -41,7 +41,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
     In Version 2 sind $x = y = 64$ und $z = 233$.
 
     Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte der amoprh/kristallinen Struktur als Bitmap ausgegeben werden.
-    Kristalline W"urfel sind schwarz und amorphe "Wurfel wei"s dargestellt.
+    Kristalline W"urfel sind schwarz und amorphe W"urfel wei"s dargestellt.
     F"ur die $x-z$- beziehungsweise  $y-z$-Querschnitte besteht die M"oglichkeit "uber mehrere Querschnitte zu mitteln.
     Die selbe Mittelung "uber den amorph/kristallinen Zustand ist bei den TEM-Aufnahmen, der auf eine Dicke von $100$ bis $300 \, nm$ pr"aparierten Proben der Fall.
 
@@ -192,7 +192,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
   Im Folgenden sei die Anzahl der W"urfel in $x$, $y$ und $z$ Richtung $X$, $Y$ und $Z$.
   Eine Anzahl von $N$ Durchl"aufen ist damit "aquivalent zur Dosis $D$, die wie folgt gegeben ist:
   \begin{equation}
-  D = \frac{N}{XY(3 nm)^2} \, \textrm{.}
+  D = \frac{N}{XY(3 \, nm)^2} \, \textrm{.}
   \label{eq:dose_steps}
   \end{equation}
 
@@ -346,7 +346,6 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
     Die Wahl des Volumens, in das das Ion eingebaut wird, ist analog zur Wahl der Ermittlung des zu sto"senden Volumens.
     Lediglich die Implantationstiefe wird durch eine Zufallszahl bestimmt, deren Wahrscheinlichkeitsverteilung dem Konzentrationsprofil entspricht.
     Zur Erzeugung der entsprechenden Zufallszahl wird wieder die in \ref{subsubsection:verwerf_meth} beschriebene Verwerfungsmethode benutzt.
-
     In dem ausgew"ahlten W"urfel $\vec{r}(k,l,m)$ wird der Z"ahler f"ur den Kohlenstoff um eins erh"oht.
 
     \subsection{Diffusion und Sputtern}
@@ -469,7 +468,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
     Die Sputterroutine wird nach der Dosis, die einem Abtrag von einer Ebene von Zellen ($3 \, nm$) entspricht, ausgef"uhrt und bewirkt, dass diese oberste Ebene entfernt wird.
     Der Zusammenhang zwischen Sputterrate $S$ und Anzahl der Simulationsdurchl"aufe $n$ ist demnach wie folgt gegeben:
     \begin{equation}
-    S = \frac{(3 nm)^3 XY }{n} \quad \textrm{.}
+    S = \frac{(3 \, nm)^3 XY }{n} \quad \textrm{.}
     \end{equation}
     Nach $n$ Simulationsdurchl"aufen wird eine kohlenstofffreie, kristalline Ebene von unten her eingeschoben.
     Der Inhalt der Ebene $i$ wird auf die Ebene $i-1$ (f"ur $i = Z, Z-1, \ldots, 2$) "uberschrieben.
@@ -477,7 +476,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
     Diese entspricht der abgetragenen Ebene.
     Die Ebene $i=Z$ erh"alt kristallinen Status und die Kohlenstoffkonzentration Null.
 
-    Dies macht allerdings nur Sinn, wenn das Implantationsprofil und die nukleare Bremskraft f"ur die Ebenen tiefer $Z$ auf Null abgefallen ist, um kristalline, kohlenstofffreie Ebenen zu garantieren.
+    Dies macht allerdings nur Sinn, wenn das Implantationsprofil und die nukleare Bremskraft f"ur die Ebenen tiefer $Z$ auf Null abgefallen sind, um kristalline, kohlenstofffreie Ebenen zu garantieren.
     Daher wird das Sputtern nur in Simulationen "uber gro"se Tiefenbereiche ber"ucksichtigt.
 
     Die Sputterrate kann durch {\em TRIM} beziehungsweise Messungen des Kohlenstoffprofils bestimmt werden.
@@ -510,7 +509,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
   Der Diffusionsprozess ist uneingeschr"ankt m"oglich.
   In der ersten Version wurde der Einfluss der amorph/kristallinen Struktur direkter Nachbarn auf die Rekristallisation nach \eqref{eq:p_ac_genau} noch nicht beachtet.
   Die Rekristallisationswahrscheinlichkeit ergibt sich hier aus \eqref{eq:p_ac_local}.
-  Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ gro"sem Target und Diffusion alle $100$ Schritte, betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden.
+  Die Rechenzeit einer Simulation mit $3 \times 10^7$ Durchl"aufen, einem $64 \times 64 \times 100$ gro"sem Target, einem Treffer pro Durchlauf und Diffusion alle $100$ Schritte, betr"agt auf einem $900 Mhz$ {\em Pentium 3} ungef"ahr $3$ Stunden.
 
   In der zweiten Version wird die gesamte Implantationstiefe simuliert.
   Das Simulationsfenster geht von $0-700 \, nm$.
@@ -529,7 +528,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
   Das Betriebssystem generiert aus dem Rauschen einiger Treiber, zum Beispiel den Treibern f"ur Tastatur, Maus und Festplatte einen Vorrat an Entropie.
   Eine Zufallszahl wird durch Anwendung des {\em SHA}-Algorithmus (kurz f"ur {\bf S}ecure {\bf H}ash {\bf A}lgorithm) auf den Inhalt des Entropievorrates erzeugt.
   Eine zweite M"oglichkeit ist die Verwendung des Zufallszahlengenerators der Standardbibliothek der Programmiersprache {\em C}.
-  Diese generiert die Zufallszahlensequenz nach der im Abschnitt \ref{subsection:rand_gen} vorgestellten linearen Kongruenzmethode.
+  Dieser generiert die Zufallszahlensequenz nach der im Abschnitt \ref{subsection:rand_gen} vorgestellten linearen Kongruenzmethode.
   Das zuletzt genannte Verfahren ist damit unabh"angig vom Betriebssystem.
 
   F"ur vern"unftige Ergebnisse muss die Qualit"at der Zufallszahlen gesichert sein.