mre fixes ...
[lectures/latex.git] / nlsop / diplom / simulation.tex
index baa1f36..be5e08b 100644 (file)
@@ -1,10 +1,10 @@
 \chapter{Simulation}
 \label{chapter:simulation}
 
-Im Folgenden soll die Implementation der Monte-Carlo-Simulation nach dem vorangegangen Modell diskutiert werden.
-Die Simulation tr"agt den Namen {\em NLSOP}, was f"ur die Schlagw"orter {\bf N}ano, {\bf L}amellar und {\bf S}elbst{\bf O}ragnisations{\bf P}rozess steht.
+Im Folgenden soll die Implementation der Monte-Carlo-Simulation nach dem vorangegangenen Modell diskutiert werden.
+Die Simulation tr"agt den Namen {\em NLSOP}, was f"ur die Schlagw"orter {\bf N}ano, {\bf L}amellar und {\bf S}elbst{\bf o}rganisations{\bf p}rozess steht.
 Die Simulation ist in der Programmiersprache {\em C} \cite{kerningham_ritchie} geschrieben.
-Der Simulationscode wurde auf Computern der {\em IA32}-Rechnerarchitektur mit dem {\em GNU C Compiler} auf einem Linux Bestriebssystem "ubersetzt und betrieben.
+Der Simulationscode wurde auf Computern der {\em IA32}-Prozessorarchitektur mit dem {\em GNU C Compiler} auf einem Linux Bestriebssystem "ubersetzt und betrieben.
 
 Ziel der Simulation ist die Validierung des Modells anhand der experimentellen Ergebnisse, wie sie in Abbildung \ref{img:xtem_img} vorliegen.
 Es wurden zwei Versionen der Simulation erstellt, die unterschiedliche Tiefenbereiche abdecken.
@@ -30,7 +30,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
     Wie in Abbildung \ref{img:sim_gitter} zu sehen ist, wird das Target in W"urfel mit der Seitenl"ange $a = 3 \, nm$ zerlegt.
     \printimg{h}{width=12cm}{gitter_oZ.eps}{Unterteilung des Targets in W"urfel mit $3 \, nm$ Kantenl"ange. Jedes Volumen ist entwerder amorph (rot) oder kristallin (blau) und protokolliert die lokale Kohlenstoffkonzentration.}{img:sim_gitter}
     Die Anzahl der W"urfel in $x$, $y$ und $z$ Richtung ist frei einstellbar.
-    Ein solches Volumen kann durch den Ortsvektor $\vec{r}(k,l,m)$, wobei $k$, $l$ und $m$ ganze Zahlen sind, addressiert werden.
+    Ein solches Volumen kann durch den Ortsvektor $\vec{r}(k,l,m)$, wobei $k$, $l$ und $m$ ganze Zahlen sind, adressiert werden.
     Jeder W"urfel hat entweder den Zustand amorph (rot), oder ist kristallin (blau).
     Die lokale Anzahl der implantierten Kohlenstoffatome wird ebenfalls protokolliert.
 
@@ -40,7 +40,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
     In Version 1 der Simulation wurden $x = y = 50$ beziehungsweise $x = y = 64$ und $z = 100$ gesetzt.
     In Version 2 sind $x = y = 64$ und $z = 233$.
 
-    Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte (Cross-Sections) der amoprh/kristallinen Struktur als Bitmap ausgegeben werden.
+    Zum besseren Vergleich der Simulationsergebnisse mit den experimentell erhaltenen TEM-Aufnahmen k"onnen Querschnitte (Cross-Sections) der amorph/kristallinen Struktur als Bitmap ausgegeben werden.
     Kristalline W"urfel sind schwarz und amorphe W"urfel wei"s dargestellt.
     F"ur die $x-z$- beziehungsweise  $y-z$-Querschnitte besteht die M"oglichkeit "uber mehrere Querschnitte zu mitteln.
     Die selbe Mittelung "uber den amorph/kristallinen Zustand ist bei den TEM-Aufnahmen, der auf eine Dicke von $100$ bis $300 \, nm$ pr"aparierten Proben der Fall.
@@ -123,9 +123,9 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
 
   F"ur die Simulation ben"otigt man die Statistik der Sto"sprozesse des Kohlenstoffs im Siliziumtarget unter den gegebenen Implantationsbedingungen.
   Dabei sind insbesondere die nukleare Bremskraft f"ur den Amorphisierungs- beziehungsweise Rekristallisationsschritt und das Implantationsprofil f"ur den Einbau des Kohlenstoffs ins Siliziumtarget von Interesse.
-  {\em NLSOP} benutzt die Ergebnisse des {\em TRIM}-Programms, welches die Wechelswirkung der Ionen mit dem Target simuliert und somit ein geeignetes Bremskraft- und Implantationsprofil, sowie eine genaue Buchf"uhrung "uber die Sto"skaskaden bereitstellt.
+  {\em NLSOP} benutzt die Ergebnisse des {\em TRIM}-Programms, welches die Wechelswirkung der Ionen mit dem Target simuliert und somit ein geeignetes Bremskraft- und Implantationsprofil sowie eine genaue Buchf"uhrung "uber die Sto"skaskaden bereitstellt.
   Durch die Abbildung von Zufallszahlen auf die so erhaltenen Verteilungen k"onnen die eigentlichen physikalischen Abl"aufe sehr schnell und einfach behandelt werden.
-  Im Folgenden wird auf die Ermittlung einiger, f"ur {\em NLSOP} wichtige Statistiken eingegangen.
+  Im Folgenden wird auf die Ermittlung einiger f"ur {\em NLSOP} wichtige Statistiken eingegangen.
 
     \subsection{Implantationsprofil und nukleare Bremskraft}
 
@@ -135,15 +135,14 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
     Abbildung \ref{img:bk_impl_p} zeigt die von {\em TRIM 92} ermittelte nukleare Bremskraft sowie das Kohlenstoffkonzentrationsprofil f"ur die in dieser Arbeit verwendeten Parameter.
     Die gestrichelte Linie markiert das Ionenprofilmaximum bei $500 \, nm$.
     Sputtereffekte und Abweichungen aufgrund der kontinuierlich ver"anderten Targetzusammensetzung w"ahrend der Hochdosisimplantation werden von {\em TRIM} allerdings nicht ber"ucksichtigt.
-    
     Die Profile werden von {\em TRIM} selbst in separate Dateien geschrieben.
     Tauscht man die Kommata (Trennung von Ganzzahl und Kommastelle) durch Punkte aus, so kann {\em NLSOP} diese Dateien auslesen und die Profile extrahieren.
-   
+
     In Abbildung \ref{img:trim_impl} ist das f"ur diese Simulation verwendete, von einer neueren {\em TRIM}-Version ({\em SRIM 2003.26})  berechnete Implantationsprofil abgebildet.
     Dieses Profil verwendet {\em NLSOP} zum Einbau des Kohlenstoffs.
     Das Implantationsmaximum liegt hier bei ungef"ahr $530 \, nm$.
     Auff"allig ist eine Verschiebung des Maximums um $30 \, nm$ zu dem Maximum aus Abbildung \ref{img:bk_impl_p}.
-    Dies ist auf eine Ver"anderung in der elektronischen Bremskraft zur"uckzuf"uhren.
+    Dies ist auf einen Unterschied in der Berechnung der elektronischen Bremskraft in den zwei {\em TRIM}-Versionen zur"uckzuf"uhren.
 
     \clearpage
 
@@ -153,7 +152,7 @@ Das Kapitel schlie"st mit dem Test der verwendeten Zufallszahlen.
     Weiterhin bietet {\em TRIM} die M"oglichkeit eine Datei Namens {\em COLLISION.TXT} anzulegen, in der s"amtliche Sto"skaskaden protokolliert sind.
     Zu jedem Sto"s sind Koordinaten und Energie"ubertrag angegeben.
     Mit dem Programm {\em parse\_trim\_collision} (Anhang \ref{section:hilfsmittel}) kann diese Datei ausgewertet werden.
-    Die daraus gewonnen Erkenntnisse sollen im Folgenden diskutiert werden.
+    Die daraus gewonnenen Erkenntnisse sollen im Folgenden diskutiert werden.
     F"ur diese Statistik wurden die Sto"skaskaden von $8300$ implantierten Ionen verwendet.
 
     \printimg{h}{width=12cm}{trim_coll.eps}{Auf das Maximum 1 skalierte tiefenabh"angige Energieabgabe (blau) und Anzahl der Kollisionen (rot).}{img:trim_coll}