ci soon and often
[lectures/latex.git] / nlsop / diplom / simulation.tex
index d254019..d9d01e5 100644 (file)
   Dies entspricht einer Tiefe von ungef"ahr $300 nm$, und somit einer Anzahl von $Z=100$ W"urfeln in $z$-Richtung.
 
   Wie in \ref{img:bk_impl_p} gut zu erkennen ist, kann in diesem Tiefenbereich sowohl die Reichweitenverteilung als auch die nukleare Bremskraft durch eine von der Tiefe linear abh"angige Funktion gen"ahert werden.
-  Daher ergeben sich "Anderungen zu den im vorigen Abschnitt erkl"arten Methoden zur Wahl des Volumens in dem ein Sto"sprozess beziehungsweise eine Kohelnstofferh"ohung stattfindet.
+  Daher ergeben sich "Anderungen zu den im vorigen Abschnitt erkl"arten Methoden zur Wahl des Volumens in dem ein Sto"sprozess beziehungsweise eine Kohlenstofferh"ohung stattfindet.
 
   Die Zufallszahl $z$, die auf die Tiefen-Koordinate $m$ abgebildet wird, muss der Verteilung $p(z)dz = (sz + s_0)dz$ gen"ugen.
   Dabei sind $s$ unnd $s_0$ die linear gen"aherte nukleare Bremskraft beschreibende Simulationsparameter.
 
   F"ur vern"unftige Ergebnisse muss die Qualit"at der Zufallszahlen gesichert sein.
   Es gibt viele statistische Tests eine Zahlenfolge auf ihre Verteilung beziehungsweise Zuf"alligkeit zu "uberpr"ufen.
-  Im Folgenden soll nur geschaut werden, dass f"ur gleichverteilte Zufallszahlen keine lokalen Anh"aufungen von Zahlen existieren.
+
+  Im Folgenden soll nur kontrolliert werden, dass f"ur gleichverteilte Zufallszahlen keine lokalen Anh"aufungen von Zahlen existieren.
   Desweiteren werden die Methoden zur Erzeugung spezieller Wahrscheinlichkeitsverteilungen durch Vergleich der H"aufigkeit auftretender Zufallszahlen mit dem gew"unschten Verlauf "uberpr"uft.
 
-  Zun"achst soll der 
-  Abbildung \ref{img:uniform_distrib} zeigt die H"aufigkeit
+  Dazu werden f"ur die unterschiedlichen Verteilungen jeweils 10 Millionen Zufallszahlen zwischen $0$ und $232$ erzeugt und auf die n"achst kleinere ganze Zahl abgerundet.
+  Ein einfaches Script-Programm z"ahlt die H"aufigkeit der einzelnen Zufallszahlen der Zufallszahlensequenz.
+
+  \begin{figure}[h]
+  \includegraphics[width=12cm]{random.eps}
+  \caption{H"aufigkeit ganzzahliger Zufallszahlen unterschiedlicher Wahrscheinlichkeitsverteilungen. F"ur jede Verteilung wurden 10 Millionen Zufallszahlen ausgew"urfelt.}
+  \label{img:random_distrib}
+  \end{figure}
+  Abbildung \ref{img:random_distrib} zeigt die H"aufigkeit von Zufallszahlen zwischen $0$ und $232$, abgerundet auf die n"achst kleinere ganze Zahl, f"ur unterschiedliche Wahrscheinlichkeitsverteilungen.
+  
+  Die blauen Punkte zeigen die Gleichverteilung nach \eqref{eq:gleichverteilte_r}.
+  Man erkennt keine lokalen Anh"aufungen.
+
+  Die roten Punkte zeigen die H"aufigkeit der Zufallszahlen bei Verwendung einer linear steigenden Wahrscheinlichkeitsverteilung wie in Abschnitt \ref{subsubsection:lin_g_p} beschrieben.
+  Dabei wurde $a=1$, $b=0$ und $Z=233$ gew"ahlt.
+  Wie erwartet zeigen die Punkte einen linearen Verlauf.
+
+  Die H"aufigkeit der mit der Verwerfungsmethode erzeugten Zufallszahlen entsprechend der nuklearen Bremskraft (gr"un) und dem Implantationsprofil (schwarz) stimmen sehr gut mit den Profilen in Abbildung \ref{img:bk_impl_p} "uberein.
 
   \section{Ablaufschema}
 
+  Das 
+