diffusion erklaeren
[lectures/latex.git] / nlsop / nlsop_fp_b.tex
index 1da6d0a..9748e94 100644 (file)
@@ -1,4 +1,4 @@
-\documentclass{report}
+\documentclass{book}
 
 \usepackage{verbatim}
 \usepackage[german]{babel}
@@ -7,7 +7,7 @@
 \usepackage{amsmath}
 \usepackage{ae}
 
-\usepackage{graphicx}
+\usepackage[dvips]{graphicx}
 \graphicspath{{./img/}}
 
 \usepackage{./graphs}
@@ -103,20 +103,55 @@ Nun kann mit $S_e$ und $S_n$ die mittlere Reichweite berechnet werden. Allerding
 \]
 $D$ entspricht hier der Dosis, also die Zahl der implantierten Ionen pro Fl"ache, $\Delta R_p$ ist die Standardabweichung der projezierten Reichweite $R_p$.
 
-In folgender Abbildung ...
+Folgende Abbildung zeigt ein tiefenabh"angiges Implantationsprofil zusammen mit elektronischen und nuklearen Energieverlust, ermittelt durch das Monte-Carlo-Simulationsprogramm TRIM.\\
+\includegraphics{implsim_.eps}
 
 \section{Amorphisierung}
+Durch die Bestrahlung des Targets werden Sch"aden im Kristallgitter hervorgerufen. Dabei werden Targetatome durch St"o"se mit Ionen verlagert, oder durch St"o"se durch bereits angesto"sene Atome, sogenannten Recoils, wenn diese mindestens die Verlagerungsenergie $E_d$ besitzen. Im letzten Fall spricht man auch von Verlagerungskaskaden. Die in einem prim"aren Sto"s verlagerten Atome, durch ein Ion der Energie $E$, kann nach Kinchin Pease zu
+\[
+ N_{p,d} = \frac{E}{E_d}
+\]
+abgesch"atzt werden.
+
+Gleichzeitig heilen Defekte aus, indem verlagerte Gitteratome an ihren Gitterplatz zur"uckkehren. Bei der thermischen Defektausheilung wird dies durch die thermisch erh"ohte Mobilit"at der Defekte erm"oglicht. Andererseits kann der Ionenstrahl selbst zur Defektausheilung beitragen. Dieser kann an amorph/kristallinen Grenzfl"achen Rekristallisation beg"unstigen oder auch zur Bildung von Kristallisationskeimen in amorphen Gebieten f"uhren.
+
+F"ur die weitere Arbeit von Bedeutung, ist der experimentelle Befund, da"s sich die Intensit"at der Strahlensch"adigung wie die nukleare Bremskraft verh"alt.
+
 
 \chapter{Modell und Simulation}
 
-\section{Modellannahmen}
-\subsection{Strahlensch"adigung und nukleare Bremskraft}
-\subsection{Druckspannung und Amorphisierung}
-\subsection{Implantationsprofil und Kohlenstoffverteilung}
-\subsection{Diffusionsprozesse}
+\section{Gegenstand der Simulation}
+Wie bereits in der Einleitung erw"ahnt, soll in dieser Arbeit nur die Entstehung und Selbstorganisation lamellarer amorpher Ausscheidungen oberhalb des Implantationsmaximums behandelt werden. Diese beobachtet man bei Implantationen in $(100)$-orientiertes Silizium bei niedrigen Targettemperaturen, typischerweise $T<400 \, ^{\circ} \mathrm{C}$. "Ahnliches wurde auch bei der Hochdosis-Sauerstoff-Implantation in Silizium gefunden.
+
+Implantationsprofile oder nukleare Bremskr"afte, so wie weitere verwendete Ergebnisse werden nicht simuliert. Im Gegenteil, diese Gr"o"sen werden aus schon existierenden Simulationsprogrammen wie TRIM entnommen.
+
+Folgende Abbildung zeigt eine TEM-Aufnahme einer mit $4,3 \times 10^{17} \frac{C}{cm^2}$ implantiertenProbe bei einer Targettemperatur von $150 \, ^{\circ} \mathrm{C}$. Da die amorphe $SiC_x$-Schicht nicht weiter von Interesse ist, beschr"ankt sich das Simulationsfenster von Anfang der Probe bis zu Beginn der durchgehenden amorphen Schicht (hier ca. $310nm$). Ziel ist es, die in der rechten Vergr"o"serung gut zu erkennenden lamellaren und sph"arischen Einschl"u"se zu reproduzieren.\\
+\includegraphics[width=10cm]{k393abild1.eps}
+
+\section{Das Modell}
+Im Folgenden wird ein Modell vorgestellt, welches die Bildung und Selbstorganisation der beobachteten lamellaren Strukturen zu erkl"aren versucht. Die untenstehende Grafik soll das Modell veranschaulichen.\\
+\\
+\includegraphics[width=12cm]{model1_.eps}
+\\
+Die sehr geringe L"oslichkeit von Kohlenstoff in Silizium bei Raumtemperatur, f"uhrt bei gen"ugend hoher Kohlenstoffkonzentration zu sph"arischen $SiC_x$-Ausscheidungen. Da die Gitterkonstante von kubischen Siliziumkarbid ($4,36$\AA) fast um $20\%$ kleiner als die von reinen kristallinen Silizium ($5,43$\AA) ist, hat die Nukleation von kristallinen $3C-SiC$ in $c-Si$ eine hohe Grenzfl"chenenergie zur Folge. Daher ist es energetisch g"unstiger wenn eins der beiden Substanzen in amorpher Form besteht. Da reines amorphes Silizium instabil unter den gegebenen Bedingungen ist und ionenstrahlinduziert epitaktisch rekristallisiert, wird die kohlenstoffreichere Phase in amorpher Form vorliegen.
+
+Weil $SiC$ im amorphen Zustand eine $20-30\%$ geringere Dichte als im kristallinen Zustand besitzt, ist dies auch f"ur amorphes $SiC_x$ anzunehmen. Dies f"uhrt zum Bestreben der amorphen Gebiete sich auszudehnen, weshalb Druckspannungen auf die Umgebung wirken. Da es sich um eine sehr d"unne Probe handelt, k"onnen die Druckspannungen in vertikaler Richtung relaxieren. In horizontaler Richtung erschweren die Druckspannungen den Wiedereinbau der durch Sto"skaskaden verlagerten Atome auf ihre regul"aren Gitterpl"atze. Somit werden bevorzugt Gebiete zwischen schon amorphen Einschl"ussen amorphisiert. Dies f"uhrt zur Stabilisierung der selbstorganisierten lamellaren Struktur.
+
+Eine weitere M"oglichkeit des Systems zur Energieminimierung ist Diffusion. Dabei wird durch Diffusion von Kohlenstoff in amorphe Gebiete eine Reduzierung der Kohlenstoff"ubers"attigung in kristallinen Gebieten erreicht.
+
+\section{Die Simulation}
+Zur Beschreibung des Selbstorganisationsprozesses wird das Monte-Carlo-Verfahren verwendet. Monte-Carlo-Simulationen bedienen sich der M"oglichkeit des Computers Pseudozufallszahlen zu generieren. Diese entscheiden dann "uber Amorphisierung/Rekristallisation sowie die Kohlenstoffverteilung und noch weitere Ereignisse. Um die oben genannten Modellvorstellungen zu ber"ucksichtigen m"ussen im folgenden noch einige Modellannahmen diskutiert werden. Danach wird ein Ablaufschema des Programms pr"asentiert und erl"autert.
+\subsection{weitere Modellannahmen}
+F"ur die Simulation sind noch weitere Annahmen n"otig, die im folgenden erkl"art werden. Dabei mu"s beachtet werden, da"s die Simulation nur das Gebiet vor der amorphen $SiC_x$-Schicht betrachtet.
+\subsubsection{Strahlensch"adigung und nukleare Bremskraft}
+Wichtig f"ur diese Arbeit ist die Tatsache, da"s sich die Strahlensch"adigung wie die nukleare Bremskraft verh"alt. In dem Bereich des Simulationsfensters kann diese als linear angenommen werden.
+\subsubsection{Druckspannung und Amorphisierung}
+Die Druckspannungen auf ein Gebiet erh"ohen die Wahrscheinlichkeit, da"s es nacheinem Sto"sprozess amorph wird. Die Druckspannungen sollten proportional zur Kohlenstoffkonzentration der amorphen Umgebung sein, und mit $\frac{1}{r^2}$ abnehmen (Druck = Kraft / Fl"ache), wobei $r$ der Abstand zum betreffenden Gebiet ist. Desweiteren nimmt die Wahrscheinlichkeit eines Gebietes, amorph zu werden, mit der Kohlenstoffkonzentration linear zu.
+\subsubsection{Implantationsprofil und Kohlenstoffverteilung}
+Analog zur nuklearen Bremskraft kann das Implantationsprofil linear gen"ahert werden. Die Kohlenstoffkonzentration sollte also proportional zur Tiefe zunehmen.
+\subsubsection{Diffusionsprozesse}
+Diffusionsprozesse resultierne aus einem Dichtegradienten. .....
 
-\section{Simulation}
-\subsection{Vom Modell zur Simulation}
 \subsection{Ablaufschema}
 \originalTeX
 \begin{figure}[thbp]