iadded version 2 (mods to obsolete ver1)
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006.tex
index 285a42c..0988937 100644 (file)
 %
 % special format, scaled by 2.82 -> A0
 %
-\def\breite{390mm}
-\def\hoehe{319.2mm}
-\def\anzspalten{4}
+% A4 landscape (?)
+%
+%\def\breite{390mm}
+%\def\hoehe{319.2mm}
+%\def\anzspalten{4}
 %
 % A3 landscape
 %
 %\def\hoehe{297mm}
 %\def\anzspalten{2}
 %
+% A0 portrait
+%
+%\def\breite{841mm}
+%\def\hoehe{1189mm}
+%\def\anzspalten{3}
+%
+% A0 / 2.82 portrait
+%
+\def\breite{298.23mm}
+\def\hoehe{421.63mm}
+\def\anzspalten{3}
+%
 %
 %
 % scaling procedure:
 }
 
 % header
-\vfill
+%\vfill
 \hfill
 \psshadowbox{\makebox[0.95\textwidth]{%
-       \hfill
-       \parbox[c]{0.1\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
-       \parbox[c]{0.7\linewidth}{%
+       %\hfill
+       \parbox[c]{0.15\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
+       \parbox[c]{0.62\linewidth}{%
                \begin{center}
-                       \textbf{\Huge{Monte Carlo simulation study of a
-                                     selforganization process\\
+                       \textbf{\Huge{Monte Carlo simulation study \\
+                                     of a selforganization process \\
                                      leading to ordered precipitate structures}
                        }\\[0.7em]
                        \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen,
                        }
                \end{center}
        }
-       \parbox[c]{0.1\linewidth}{%
+       \parbox[c]{0.15\linewidth}{%
                \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps}
        }
-       \hfill
+       %\hfill
 }}
-\hfill\mbox{}\\[0.5cm]
+\hfill\mbox{}\\[0cm]
 
 %\vspace*{1.3cm}
 
        \parbox[t][\textheight]{1.3\textwidth}{%
                %\vspace*{0.2cm}
                \hfill
+               %\hspace{0.5cm}
 % first column
 \begin{spalte}
        \begin{kasten}
       $\rightarrow$ {\bf amourphous} precipitates
 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
       $\rightarrow$ {\bf lateral strain} (black arrows)
+\item implantation range near surface\\
+      $\rightarrow$ {\bf ralaxation} of {\bf vertical strain component}
 \item reduction of the carbon supersaturation in $c-Si$\\
       $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
       (white arrows)
-\item lateral strain (vertical component relaxating)\\
+\item remaining lateral strain\\
       $\rightarrow$ {\bf strain induced} lateral amorphization
                        \end{itemize}
        \end{kasten}
-\end{spalte}
-\begin{spalte}
        \begin{kasten}
                \section*{3 \hspace{0.1cm} {\color{blue}Simulation}}
 
                        \begin{center}
                                \includegraphics[width=6cm]{gitter_e.eps}
                        \end{center}
+                       Periodic boundary conditions in $x,y$-direction.\\
+                       Start conditions: All volumes crystalline, zero carbon
+                       concentration.
 
+               \subsection*{3.3 {\color{blue} TRIM collision statistics}}
+               \begin{center}
+                       \includegraphics[width=8cm]{trim_coll_e.eps}
+               \end{center}
+               \begin{center}
+               $\Rightarrow$ mean constant energy loss per collision of an ion
+               \end{center}
+       \end{kasten}
+\end{spalte}
+\begin{spalte}
+       \begin{kasten}
                \subsection*{3.2 {\color{blue} Simulation algorithm}}
 
                \subsubsection*{3.2.1 Amorphization/Recrystallization}
                        \begin{itemize}
-                               \item random numbers according to the nuclear
-                                     energy loss to determine the volume hit
-                                     by an impinging ion
+                               \item random numbers distributed according to 
+                                     the nuclear energy loss to determine the
+                                     volume hit by an impinging ion
                                \item compute local probability for
                                      amorphization:\\
 \[
@@ -262,8 +291,8 @@ Three contributions to the amorphization process controlled by:
 
                \subsubsection*{3.2.2 Carbon incorporation}
                        \begin{itemize}
-                               \item random numbers according to the
-                                     implantation profile to determine the
+                               \item random numbers distributed according to
+                                     the implantation profile to determine the
                                      incorporation volume
                                \item increase the amount of carbon atoms in
                                      that volume
@@ -278,16 +307,7 @@ Three contributions to the amorphization process controlled by:
                                      removal
                        \end{itemize}
 
-               \subsection*{3.3 {\color{blue} TRIM collision statistics}}
-               \begin{center}
-                       \includegraphics[width=8cm]{trim_coll_e.eps}
-               \end{center}
-               \begin{center}
-               $\Rightarrow$ mean constant energy loss per collision of an ion
-               \end{center}
        \end{kasten}
-\end{spalte}
-\begin{spalte}
        \begin{kasten}
                \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}}
 
@@ -298,19 +318,30 @@ Three contributions to the amorphization process controlled by:
                        \begin{center}              
                        \includegraphics[width=11cm]{dosis_entwicklung_ng_e_2-2.eps}
                        \end{center}
+                       Simulation parameters:\\
+                       $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$,
+                       $d_v=1 \times 10^6$.
        \end{kasten}
        \begin{kasten}
-               \subsection*{4.2 {\color{blue} Carbon distribution}}
+               \subsection*{4.2 {\color{blue} Variation of the simulation parameters}}
                        \begin{center}              
-                       \includegraphics[width=11cm]{ac_cconc_ver2_e.eps}
+                       \includegraphics[width=11cm]{var_sim_paramters_en.eps}
                        \end{center}
-                       
+                       Parameters of initial situation:\\
+                       $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$,
+                       $d_v=1 \times 10^6$.
        \end{kasten}
 \end{spalte}
-% fourth column
 \begin{spalte}
        \begin{kasten}
-               \subsection*{4.3 {\color{blue} More structural/compositional
+               \subsection*{4.3 {\color{blue} Carbon distribution}}
+                       \begin{center}              
+                       \includegraphics[width=11cm]{ac_cconc_ver2_e.eps}
+                       \end{center}
+                       
+       \end{kasten}
+       \begin{kasten}
+               \subsection*{4.4 {\color{blue} More structural/compositional
                                               information}}
                \begin{center}
                        \includegraphics[width=8cm]{97_98_ng_e.eps} \\
@@ -318,15 +349,16 @@ Three contributions to the amorphization process controlled by:
                \end{center}
        \end{kasten}
        \begin{kasten}
-               \subsection*{4.4 \hspace{0.1cm} {\color{blue} Broad distribution
+               \subsection*{4.5 \hspace{0.1cm} {\color{blue} Broad distribution
                             of lamellar structure - the recipe}}
-               \subsubsection*{4.4.1 Constant carbon concentration}
+               \subsubsection*{4.5.1 Constant carbon concentration}
                        \makebox[11cm]{%
                                \parbox[c]{5cm}{%
                        \begin{itemize}
-                               \item multiple implantation \\ steps
+                               \item multiple implantation\\
+                                     steps
                                \item energies: $180$ - $10 \, keV$
-                               \item higher temeprature\\
+                               \item temeprature: $500 ^{\circ} \mathrm{C}$\\
                                      $\rightarrow$ prevent amorphization
                        \end{itemize}
                        $\Rightarrow$ nearly constant carbon distribution
@@ -336,19 +368,22 @@ Three contributions to the amorphization process controlled by:
                        \includegraphics[width=6cm]{multiple_impl_cp_e.eps}
                                }
                        }
-               \subsubsection*{4.4.2 2 MeV C$^+$ implantation
+               \subsubsection*{4.5.2 2 MeV C$^+$ implantation
                                               step}
                        \begin{center}              
                        \includegraphics[width=10cm]{multiple_impl_e.eps}
                        \end{center}
+                       Starting point for materials with high photoluminescence.\\
+                       Dihu Chen et al. Opt. Mater. 23 (2003) 65.
 
        \end{kasten}
        \begin{kasten}
-               \section*{5 \hspace{0.1cm} {\color{red} Conclusions}}
+               \section*{5 \hspace{0.1cm} {\color{red} Conclusion}}
                        \begin{itemize}
                \item selforganized nanometric precipitates by ion irradiation
                \item model describing the seoforganization process
-               \item precipitate structures traceable by simulation
+               \item set of parameters reproducing the experimental observations
+               \item precipitation process traceable by simulation
                \item detailed structural/compositional information
                \item recipe for broad distributions of lamellar structure
                        \end{itemize}