iadded version 2 (mods to obsolete ver1)
[lectures/latex.git] / nlsop / poster / nlsop_ibmm2006.tex
index 2d00cb9..0988937 100644 (file)
 %
 % special format, scaled by 2.82 -> A0
 %
-\def\breite{390mm}
-\def\hoehe{319.2mm}
-\def\anzspalten{4}
+% A4 landscape (?)
+%
+%\def\breite{390mm}
+%\def\hoehe{319.2mm}
+%\def\anzspalten{4}
 %
 % A3 landscape
 %
 %\def\hoehe{297mm}
 %\def\anzspalten{2}
 %
+% A0 portrait
+%
+%\def\breite{841mm}
+%\def\hoehe{1189mm}
+%\def\anzspalten{3}
+%
+% A0 / 2.82 portrait
+%
+\def\breite{298.23mm}
+\def\hoehe{421.63mm}
+\def\anzspalten{3}
+%
 %
 %
 % scaling procedure:
 }
 
 % header
-\vfill
+%\vfill
 \hfill
 \psshadowbox{\makebox[0.95\textwidth]{%
-       \hfill
-       \parbox[c]{0.1\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
-       \parbox[c]{0.7\linewidth}{%
+       %\hfill
+       \parbox[c]{0.15\linewidth}{\includegraphics[height=4.5cm]{uni-logo.eps}}
+       \parbox[c]{0.62\linewidth}{%
                \begin{center}
-                       \textbf{\Huge{Monte Carlo simulation study of a
-                                     selforganization process\\
+                       \textbf{\Huge{Monte Carlo simulation study \\
+                                     of a selforganization process \\
                                      leading to ordered precipitate structures}
                        }\\[0.7em]
                        \textsc{\LARGE \underline{F. Zirkelbach}, M. H"aberlen,
                        }
                \end{center}
        }
-       \parbox[c]{0.1\linewidth}{%
+       \parbox[c]{0.15\linewidth}{%
                \includegraphics[height=4.1cm]{Lehrstuhl-Logo.eps}
        }
-       \hfill
+       %\hfill
 }}
-\hfill\mbox{}\\[1.cm]
+\hfill\mbox{}\\[0cm]
 
 %\vspace*{1.3cm}
 
 % content, let's rock the columns
 \begin{lrbox}{\spalten}
        \parbox[t][\textheight]{1.3\textwidth}{%
-               \vspace*{0.2cm}
+               %\vspace*{0.2cm}
                \hfill
+               %\hspace{0.5cm}
 % first column
-%\begin{spalte}
-%      \begin{kasten}
-%              \begin{center}
-%                      {\large{\color{blue}\underline{ABSTRACT}}}
-%              \end{center}
-%
-% abstract ... skip it
-%High-dose ion implantation into solids usually leads to a disordered distribution of defects or precipitates with variable sizes.
-%However materials exist for which high-dose ion irradiation at certain conditions results in periodically arranged, self-organized, nanometric amorphous inclusions.
-%This has been observed for a number of ion/target combinations \cite{ommen,specht,ishimaru} which all have in common a largely reduced density of host atoms of the amorphous phase compared to the crystalline host lattice.
-%A simple model explaining the phenomenon is introduced and realized in a Monte Carlo simulation code, which focuses on high dose carbon implantation into silicon.
-%The simulation is able to reproduce the depth distribution observed by TEM and RBS.
-%While first versions of the simulation \cite{me1,me2} just covered a limited depth region of the target in which the selforganization is observed, the new version of this simulation code presented here is able to model the whole depth region affected by the irradiation process, as can be seen in chapter 4.
-%Based on simulation results a recipe is proposed for producing broad distributions of lamellar, ordered structures which, according to recent studies \cite{wong}, are the starting point for materials with high photoluminescence.
-%      \end{kasten}
-%
 \begin{spalte}
        \begin{kasten}
 
       $\rightarrow$ {\bf amourphous} precipitates
 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
       $\rightarrow$ {\bf lateral strain} (black arrows)
+\item implantation range near surface\\
+      $\rightarrow$ {\bf ralaxation} of {\bf vertical strain component}
 \item reduction of the carbon supersaturation in $c-Si$\\
       $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
       (white arrows)
-\item lateral strain (vertical component relaxating)\\
+\item remaining lateral strain\\
       $\rightarrow$ {\bf strain induced} lateral amorphization
                        \end{itemize}
        \end{kasten}
-\end{spalte}
-\begin{spalte}
        \begin{kasten}
                \section*{3 \hspace{0.1cm} {\color{blue}Simulation}}
 
                        \begin{center}
                                \includegraphics[width=6cm]{gitter_e.eps}
                        \end{center}
+                       Periodic boundary conditions in $x,y$-direction.\\
+                       Start conditions: All volumes crystalline, zero carbon
+                       concentration.
 
+               \subsection*{3.3 {\color{blue} TRIM collision statistics}}
+               \begin{center}
+                       \includegraphics[width=8cm]{trim_coll_e.eps}
+               \end{center}
+               \begin{center}
+               $\Rightarrow$ mean constant energy loss per collision of an ion
+               \end{center}
+       \end{kasten}
+\end{spalte}
+\begin{spalte}
+       \begin{kasten}
                \subsection*{3.2 {\color{blue} Simulation algorithm}}
 
                \subsubsection*{3.2.1 Amorphization/Recrystallization}
                        \begin{itemize}
-                               \item random numbers according to the nuclear
-                                     energy loss to determine the volume hit
-                                     by an impinging ion
+                               \item random numbers distributed according to 
+                                     the nuclear energy loss to determine the
+                                     volume hit by an impinging ion
                                \item compute local probability for
                                      amorphization:\\
 \[
@@ -278,8 +291,8 @@ Three contributions to the amorphization process controlled by:
 
                \subsubsection*{3.2.2 Carbon incorporation}
                        \begin{itemize}
-                               \item random numbers according to the
-                                     implantation profile to determine the
+                               \item random numbers distributed according to
+                                     the implantation profile to determine the
                                      incorporation volume
                                \item increase the amount of carbon atoms in
                                      that volume
@@ -293,9 +306,8 @@ Three contributions to the amorphization process controlled by:
                                      corresponding to $3 \, nm$ of substrat
                                      removal
                        \end{itemize}
+
        \end{kasten}
-\end{spalte}
-\begin{spalte}
        \begin{kasten}
                \section*{4 \hspace{0.1cm} {\color{blue}Simulation results}}
 
@@ -306,80 +318,80 @@ Three contributions to the amorphization process controlled by:
                        \begin{center}              
                        \includegraphics[width=11cm]{dosis_entwicklung_ng_e_2-2.eps}
                        \end{center}
-
-               \subsection*{4.1 {\color{blue} Carbon distribution}}
+                       Simulation parameters:\\
+                       $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$,
+                       $d_v=1 \times 10^6$.
+       \end{kasten}
+       \begin{kasten}
+               \subsection*{4.2 {\color{blue} Variation of the simulation parameters}}
                        \begin{center}              
-                       \includegraphics[width=11cm]{ac_cconc_ver2_e.eps}
+                       \includegraphics[width=11cm]{var_sim_paramters_en.eps}
                        \end{center}
-                       
+                       Parameters of initial situation:\\
+                       $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$,
+                       $d_v=1 \times 10^6$.
        \end{kasten}
 \end{spalte}
-% fourth column
 \begin{spalte}
        \begin{kasten}
-               \section*{5 \hspace{0.1cm} {\color{blue}Broad distribution of
-                                                       lamellar structure}}
-                       \begin{mbox}
-                       \begin{itemize}
-                               \item $10 \, at.\%$ constant carbon plateau
-                                     by multiple implantation steps at
-                                     energies between $180$ and $10 \, keV$
-                       \end{itemize}
+               \subsection*{4.3 {\color{blue} Carbon distribution}}
                        \begin{center}              
-                               \includegraphics[width=6cm]{multiple_impl_cp.eps}
+                       \includegraphics[width=11cm]{ac_cconc_ver2_e.eps}
                        \end{center}
+                       
+       \end{kasten}
+       \begin{kasten}
+               \subsection*{4.4 {\color{blue} More structural/compositional
+                                              information}}
+               \begin{center}
+                       \includegraphics[width=8cm]{97_98_ng_e.eps} \\
+                       Plane view of consecutive target layers $z$ and $z+1$
+               \end{center}
+       \end{kasten}
+       \begin{kasten}
+               \subsection*{4.5 \hspace{0.1cm} {\color{blue} Broad distribution
+                            of lamellar structure - the recipe}}
+               \subsubsection*{4.5.1 Constant carbon concentration}
+                       \makebox[11cm]{%
+                               \parbox[c]{5cm}{%
                        \begin{itemize}
-                               \item foloowed by $2 \, MeV$ $C^+$ implantation
+                               \item multiple implantation\\
+                                     steps
+                               \item energies: $180$ - $10 \, keV$
+                               \item temeprature: $500 ^{\circ} \mathrm{C}$\\
+                                     $\rightarrow$ prevent amorphization
                        \end{itemize}
+                       $\Rightarrow$ nearly constant carbon distribution
+                       ($10 \, at.\%$)
+                               }
+                               \parbox[c]{6cm}{%
+                       \includegraphics[width=6cm]{multiple_impl_cp_e.eps}
+                               }
+                       }
+               \subsubsection*{4.5.2 2 MeV C$^+$ implantation
+                                              step}
                        \begin{center}              
-                               \includegraphics[width=10cm]{multiple_impl.eps}
+                       \includegraphics[width=10cm]{multiple_impl_e.eps}
                        \end{center}
+                       Starting point for materials with high photoluminescence.\\
+                       Dihu Chen et al. Opt. Mater. 23 (2003) 65.
 
        \end{kasten}
-
-\vspace{0.5cm}
-      \begin{kasten}
-         \section*{6 \hspace{0.1cm} {\color{red} \underline{Conclusions}}}
-             \begin{itemize}
-             \item
-             
-             \item
-             
-             \item
-             
-             \item
-             
-             \end{itemize}
-      \end{kasten}
-
-\vspace{0.5cm}
-      \begin{kasten}
-
-           {\small
-           \begin{thebibliography}{9}
-           \bibitem{ommen} A. H. van Ommen,
-                           Nucl. Instr. and Meth. B 39 (1989) 194.
-           \bibitem{specht} E. D. Specht, D. A. Walko, S. J. Zinkle,
-                           Nucl. Instr. and Meth. B 84 (2000) 390.
-           \bibitem{ishimaru} M. Ishimaru,  R. M. Dickerson, K. E. Sickafus,
-                              Nucl. Instr. and Meth. B 166-167 (2000) 390.
-       \bibitem{me1} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
-                     B. Stritzker,
-                     Comp. Mater. Sci. 33 (2005) 310.
-       \bibitem{me2} F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
-                     B. Stritzker,
-                     Nucl. Instr. and Meth. B 242 (2006) 679.
-           \bibitem{wong} Dihu Chen, Z. M. Liao, L. Wang, H. Z. Wang, Fuli Zhao,
-                          W. Y. Cheung, S. P. Wong,
-                          Opt. Mater. 23 (2003) 65. Opt. Mater. 23 (2003) 65.
-           \end{thebibliography}
-           }
-   \end{kasten}
-    \end{spalte}
-    }
-    \end{lrbox}
+       \begin{kasten}
+               \section*{5 \hspace{0.1cm} {\color{red} Conclusion}}
+                       \begin{itemize}
+               \item selforganized nanometric precipitates by ion irradiation
+               \item model describing the seoforganization process
+               \item set of parameters reproducing the experimental observations
+               \item precipitation process traceable by simulation
+               \item detailed structural/compositional information
+               \item recipe for broad distributions of lamellar structure
+                       \end{itemize}
+       \end{kasten}
+\end{spalte}
+}
+\end{lrbox}
 \resizebox*{0.98\textwidth}{!}{%
-  \usebox{\spalten}}\hfill\mbox{}\vfill
-\end{document}
-
+\usebox{\spalten}}\hfill\mbox{}\vfill
 
+\end{document}