safety checkin
[lectures/latex.git] / posic / poster / emrs2008.tex
index 5945eac..15e72a6 100644 (file)
@@ -1,5 +1,5 @@
 \documentclass[portrait,a0b,final]{a0poster}
-\usepackage{epsf,psfig,pstricks,multicol,pst-grad,color}
+\usepackage{epsf,psfig,pstricks,multicol,pst-grad,pst-node,color}
 \usepackage{graphicx,amsmath,amssymb}
 \graphicspath{{../img/}}
 \usepackage[english,german]{babel}
 % Groesse der einzelnen Spalten als Anteil der Gesamt-Textbreite
 \renewcommand{\columnfrac}{.31}
 
+% potential
+\newcommand{\pot}{\mathcal{V}}
+
 % header
+\vspace{-18cm}
 \begin{header}
      \centerline{{\Huge \bfseries Molecular dynamics simulation
                                   of defect formation and precipitation}}
@@ -65,6 +69,7 @@
 
 \begin{poster}
 
+%\vspace{-6cm}
 \begin{pcolumn}
   \begin{pbox}
     \section*{Motivation}
      [3] J. K. N. Lindner, Appl. Phys. A 77 (2003) 27.
     }
   \end{pbox}
+  \begin{pbox}
+    \section*{Simulation details}
+    {\bf MD basics:}
+    \begin{itemize}
+      \item Microscopic description of N particles
+      \item Analytical interaction potential
+      \item Propagation rule in 6N-dim. phase space:
+            Hamilton's equations of motion
+      \item Observables obtained by time or ensemble averages
+    \end{itemize}
+    {\bf Application details:}\\[0.5cm]
+    \begin{minipage}{17cm}
+    \begin{itemize}
+      \item Integrator: Velocity Verlet, timestep: 1 fs
+      \item Ensemble: isothermal-isobaric NPT [4]
+            \begin{itemize}
+             \item Berendsen thermostat:
+                    $\tau_{\text{T}}=100\text{ fs}$
+             \item Brendsen barostat:\\
+                    $\tau_{\text{P}}=100\text{ fs}$,
+                   $\beta^{-1}=100\text{ GPa}$
+            \end{itemize}
+      \item Potential: Tersoff-like bond order potential [5]
+      \[
+      E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
+      \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
+      \]
+    \end{itemize}
+    \end{minipage}
+    \begin{minipage}{9cm}
+      \includegraphics[width=9cm]{tersoff_angle.eps}
+    \end{minipage}\\[1cm]
+    {\tiny
+     [4] L. Verlet, Phys. Rev. 159 (1967) 98.}\\
+    {\tiny
+     [5] P. Erhart and K. Albe, Phys. Rev. B 71 (2005) 35211.}
+  \end{pbox}
 
 \end{pcolumn}
 \begin{pcolumn}
 
   \begin{pbox}
-    \section*{Simulation algorithm}
-    Hier die Simulation rein!
-  \end{pbox}
-  \begin{pbox}
-    \section*{Results}
-    Hier die Resultate!
+    \section*{Interstitial configurations}
+    {\bf Simulation sequence:}\\
+
+\begin{minipage}{15cm}
+{\small
+ \begin{pspicture}(0,0)(14,14)
+  \rput(7,12.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
+   \parbox{14cm}{
+   \begin{itemize}
+    \item Initial configuration: $9\times9\times9$ unit cells Si
+    \item Periodic boundary conditions
+    \item $T=0\text{ K}$, $p=0\text{ bar}$
+   \end{itemize}
+  }}}}
+\rput(7,6){\rnode{insert}{\psframebox{
+ \parbox{14cm}{
+  Insertion of C / Si atom:
+  \begin{itemize}
+   \item $(0,0,0)$ $\rightarrow$ {\color{red}tetrahedral}
+         (${\color{red}\triangleleft}$)
+   \item $(-1/8,-1/8,1/8)$ $\rightarrow$ {\color{green}hexagonal}
+         (${\color{green}\triangleright}$)
+   \item $(-1/8,-1/8,-1/4)$, $(-3/8,-3/8,-1/4)$\\
+         $\rightarrow$ {\color{magenta}110 dumbbell}
+         (${\color{magenta}\Box}$,$\circ$)
+   \item random positions (critical distance check)
+  \end{itemize}
+  }}}}
+  \rput(7,1.5){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
+   \parbox{7cm}{
+   Relaxation time: 2 ps
+  }}}}
+  \ncline[]{->}{init}{insert}
+  \ncline[]{->}{insert}{cool}
+ \end{pspicture}
+}
+\end{minipage}
+\begin{minipage}{10cm}
+  \includegraphics[width=11cm]{unit_cell_s.eps}
+\end{minipage}
+
+    {\bf Si self-interstitial results:}\\
+
+{\small
+ \begin{minipage}[t]{8.5cm}
+ \underline{Tetrahedral}\\
+ $E_f=3.41$ eV\\
+ \includegraphics[width=8cm]{si_self_int_tetra_0.eps}
+ \end{minipage}
+ \begin{minipage}[t]{8.5cm}
+ \underline{110 dumbbell}\\
+ $E_f=4.39$ eV\\
+ \includegraphics[width=8cm]{si_self_int_dumbbell_0.eps}
+ \end{minipage}
+ \begin{minipage}[t]{8.5cm}
+ \underline{Hexagonal}\\
+ $E_f^{\star}\approx4.48$ eV (unstable!)\\
+ \includegraphics[width=8cm]{si_self_int_hexa_0.eps}
+ \end{minipage}\\[1cm]
+
+ \underline{Random insertion}\\
+
+ \begin{minipage}{8.5cm}
+ $E_f=3.97$ eV\\
+ \includegraphics[width=8cm]{si_self_int_rand_397_0.eps}
+ \end{minipage}
+ \begin{minipage}{8.5cm}
+ $E_f=3.75$ eV\\
+ \includegraphics[width=8cm]{si_self_int_rand_375_0.eps}
+ \end{minipage}
+ \begin{minipage}{8.5cm}
+ $E_f=3.56$ eV\\
+ \includegraphics[width=8cm]{si_self_int_rand_356_0.eps}
+ \end{minipage}\\[1cm]
+}
+
+    {\bf C in Si interstitial results:}\\
+
+{\small
+ \begin{minipage}[t]{8.5cm}
+ \underline{Tetrahedral}\\
+ $E_f=2.67$ eV\\
+ \includegraphics[width=8cm]{c_in_si_int_tetra_0.eps}
+ \end{minipage}
+ \begin{minipage}[t]{8.5cm}
+ \underline{110 dumbbell}\\
+ $E_f=1.76$ eV\\
+ \includegraphics[width=8cm]{c_in_si_int_dumbbell_0.eps}
+ \end{minipage}
+ \begin{minipage}[t]{8.5cm}
+ \underline{Hexagonal}\\
+ $E_f^{\star}\approx5.6$ eV (unstable!)\\
+ \includegraphics[width=8cm]{c_in_si_int_hexa_0.eps}
+ \end{minipage}\\[1cm]
+}
+\begin{minipage}{17cm}
+\underline{$<100>$ dumbbell configuration}
+\begin{itemize}
+  \item $E_f=0.47$ eV
+  \item Very often observed
+  \item Most energetically favorable configuration
+  \item Experimental evidence [6]
+\end{itemize}
+\end{minipage}
+\begin{minipage}{8cm}
+\includegraphics[width=8cm]{c_in_si_int_001db_0.eps}
+\end{minipage}\\[1cm]
+\begin{center}
+\includegraphics[width=24cm]{100-c-si-db_s.eps}
+\end{center}
+{\tiny
+ [6] G. D. Watkins and K. L. Brower, Phys. Rev. Lett. 36 (1976) 1329.}
+
   \end{pbox}
+
 \end{pcolumn}
 \begin{pcolumn}
 
   \begin{pbox}
-       \section*{Structural/compositional information}
-       blabla
-  \end{pbox}
-  \begin{pbox}
-       \section*{Recipe for thick films of ordered lamellae}
-       blabla
+    \section*{High C concentration simulations}
+
+    {\bf Simulation sequence:}\\
+
+{\small
+ \begin{pspicture}(0,0)(30,13)
+  % nodes
+  \rput(7.5,11){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=green]{
+   \parbox{15cm}{
+   \begin{itemize}
+    \item Initial configuration: $31\times31\times31$ unit cells Si
+    \item Periodic boundary conditions
+    \item $T=450\, ^{\circ}C$
+    \item Equilibration of $E_{kin}$ and $E_{pot}$ for $600\, fs$
+   \end{itemize}
+  }}}}
+  \rput(7.5,5){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=red]{
+   \parbox{15cm}{
+   Insertion of $6000$ carbon atoms at constant\\
+   temperature into:
+   \begin{itemize}
+    \item Total simulation volume $V_1$ {\pnode{in1}}
+    \item Volume of minimal SiC precipitation $V_2$ {\pnode{in2}}
+    \item Volume of necessary amount of Si $V_3$ {\pnode{in3}}
+   \end{itemize} 
+  }}}}
+  \rput(7.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=cyan]{
+   \parbox{8cm}{
+   Cooling down to $20\, ^{\circ}\textrm{C}$
+  }}}}
+  \ncline[]{->}{init}{insert}
+  \ncline[]{->}{insert}{cool}
+  \psframe[fillstyle=solid,fillcolor=white](16,2.6)(26,12.6)
+  \psframe[fillstyle=solid,fillcolor=lightgray](18,4.6)(24,10.6)
+  \psframe[fillstyle=solid,fillcolor=gray](18.5,5.1)(23.5,10.1)
+  \rput(17,8.4){\pnode{ins1}}
+  \rput(18.15,6.88){\pnode{ins2}}
+  \rput(21,7.6){\pnode{ins3}}
+  \ncline[linewidth=0.08]{->}{in1}{ins1}
+  \ncline[linewidth=0.08]{->}{in2}{ins2}
+  \ncline[linewidth=0.08]{->}{in3}{ins3}
+ \end{pspicture}
+}
+
+    {\bf Results:}\\
+    Foobar hier ..
   \end{pbox}
   \begin{pbox}
     \section*{Conclusions}
-    Hier die Zusammenfassung
+    \begin{itemize}
+      \item there should be
+      \item 3 conclusions
+      \item at least!
+    \end{itemize}
   \end{pbox}
 
 \end{pcolumn}