starting results now ...
[lectures/latex.git] / posic / talks / defense.tex
index c6cb981..ddfeca9 100644 (file)
@@ -170,7 +170,7 @@ E\\
 \centerslidesfalse
 
 % skip for preparation
-\ifnum1=0
+%\ifnum1=0
 
 % intro
 
@@ -248,6 +248,7 @@ E\\
 
 \begin{slide}
 
+\headphd
  {\large\bf
   Polytypes of SiC\\[0.6cm]
  }
@@ -285,18 +286,18 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
 \end{tabular}
 
 \begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=green](5.7,2.10)(0.4,0.5)
+\psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
 \end{pspicture}
 \begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=green](5.6,0.92)(0.4,0.2)
+\psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
 \end{pspicture}
 \begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=red](10.45,0.45)(0.4,0.2)
+\psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
 \end{pspicture}
 
 \end{slide}
 
-\fi
+%\fi
 
 % fabrication
 
@@ -331,10 +332,20 @@ SiC thin films by MBE \& CVD
 \begin{picture}(0,0)(-310,-20)
   \includegraphics[width=2.0cm]{cree.eps}
 \end{picture}
-{\color{red}\scriptsize Mismatch in thermal expansion coeefficient
-                        and lattice paramater}
 
-\vspace{-0.2cm}
+\vspace{-0.5cm}
+
+\begin{center}
+\color{red}
+\framebox{
+{\footnotesize\color{black}
+ Mismatch in \underline{thermal expansion coeefficient}
+ and \underline{lattice parameter} w.r.t. substrate
+}
+}
+\end{center}
+
+\vspace{0.1cm}
 
 {\bf Alternative approach}\\
 Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
@@ -363,9 +374,11 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 }
 \begin{minipage}{5.5cm}
 \begin{center}
-{\small
+{\footnotesize
 No surface bending effects\\
-$\Rightarrow$ Synthesis of large area SiC films possible
+High areal homogenity\\[0.1cm]
+$\Downarrow$\\[0.1cm]
+Synthesis of large area SiC films possible
 }
 \end{center}
 \end{minipage}
@@ -438,35 +451,14 @@ $\Rightarrow$ Synthesis of large area SiC films possible
 
 \end{slide}
 
-\end{document}
+%\end{document}
 % temp
-\ifnum1=0
+%\ifnum1=0
 
 % contents
 
 \begin{slide}
 
-\headphd
-{\large\bf
- Outline
-}
-
- \begin{itemize}
-  \item Supposed precipitation mechanism of SiC in Si
-  \item Utilized simulation techniques
-        \begin{itemize}
-         \item Molecular dynamics (MD) simulations
-         \item Density functional theory (DFT) calculations
-        \end{itemize}
-  \item C and Si self-interstitial point defects in silicon
-  \item Silicon carbide precipitation simulations
-  \item Summary / Conclusion
- \end{itemize}
-
-\end{slide}
-
-\begin{slide}
-
 \headphd
 {\large\bf
   Supposed precipitation mechanism of SiC in Si
@@ -516,7 +508,7 @@ $\rho^*_{\text{Si}}=\unit[97]{\%}$
  \begin{minipage}{4.0cm}
  \begin{center}
  C-Si dimers (dumbbells)\\[-0.1cm]
- on Si interstitial sites
+ on Si lattice sites
  \end{center}
  \end{minipage}
  \hspace{0.1cm}
@@ -726,6 +718,33 @@ r = \unit[2--4]{nm}
 
 \begin{slide}
 
+\headphd
+{\large\bf
+ Outline
+}
+
+ \begin{itemize}
+  {\color{gray}
+  \item Introduction / Motivation
+  \item Assumed SiC precipitation mechanisms / Controversy
+  }
+  \item Utilized simulation techniques
+        \begin{itemize}
+         \item Molecular dynamics (MD) simulations
+         \item Density functional theory (DFT) calculations
+        \end{itemize}
+  \item Simulation results
+        \begin{itemize}
+         \item C and Si self-interstitial point defects in silicon
+         \item Silicon carbide precipitation simulations
+        \end{itemize}
+  \item Summary / Conclusion
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
 \headphd
 {\large\bf
  Utilized computational methods
@@ -908,6 +927,9 @@ $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
 
 \end{slide}
 
+\end{document}
+\ifnum1=0
+
 \begin{slide}
 
 \footnotesize