final version?
[lectures/latex.git] / posic / talks / defense.tex
index a8062e8..e800d60 100644 (file)
 
 % layout check
 %\layout
+\ifnum1=0
 \begin{slide}
 \center
 {\Huge
@@ -134,6 +135,7 @@ F\\
 E\\
 }
 \end{slide}
+\fi
 
 % topic
 
@@ -142,23 +144,26 @@ E\\
 
  \vspace{16pt}
 
- {\LARGE\bf
-  Atomistic simulation study\\[0.2cm]
-  on silicon carbide precipitation\\[0.2cm]
-  in silicon
+ {\Large\bf
+  \hrule
+  \vspace{5pt}
+  Atomistic simulation study on silicon carbide\\[0.2cm]
+  precipitation in silicon\\
+  \vspace{10pt}
+  \hrule
  }
 
- \vspace{48pt}
+ \vspace{60pt}
 
  \textsc{Frank Zirkelbach}
 
- \vspace{48pt}
+ \vspace{60pt}
 
  Defense of doctor's thesis
 
  \vspace{08pt}
 
- Augsburg, 10. Jan. 2012
+ Augsburg, 10.01.2012
 
 \end{center}
 \end{slide}
@@ -166,6 +171,9 @@ E\\
 % no vertical centering
 \centerslidesfalse
 
+% skip for preparation
+%\ifnum1=0
+
 % intro
 
 % motivation / properties / applications of silicon carbide
@@ -238,156 +246,13 @@ E\\
 
 \end{slide}
 
-% motivation
-
-\begin{slide}
-
- {\large\bf
-  Polytypes of SiC\\[0.4cm]
- }
-
-\includegraphics[width=3.8cm]{cubic_hex.eps}\\
-\begin{minipage}{1.9cm}
-{\tiny cubic (twist)}
-\end{minipage}
-\begin{minipage}{2.9cm}
-{\tiny hexagonal (no twist)}
-\end{minipage}
-
-\begin{picture}(0,0)(-150,0)
- \includegraphics[width=7cm]{polytypes.eps}
-\end{picture}
-
-\vspace{0.6cm}
-
-\footnotesize
-
-\begin{tabular}{l c c c c c c}
-\hline
- & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
-\hline
-Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
-Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
-Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
-Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
-Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
-Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
-Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
-\hline
-\end{tabular}
-
-\begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=green](5.7,2.10)(0.4,0.5)
-\end{pspicture}
-\begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=green](5.6,0.92)(0.4,0.2)
-\end{pspicture}
-\begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=red](10.45,0.45)(0.4,0.2)
-\end{pspicture}
-
-\end{slide}
-
 % fabrication
 
 \begin{slide}
 
-\headphd
- {\large\bf
-  Fabrication of silicon carbide
- }
-
- \small
- \vspace{2pt}
-
-\begin{center}
- {\color{gray}
- \emph{Silicon carbide --- Born from the stars, perfected on earth.}
- }
-\end{center}
-
-\vspace{2pt}
-
-SiC thin films by MBE \& CVD
-\begin{itemize}
- \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
- \item \underline{Commercially available} semiconductor power devices based on
-       \underline{\foreignlanguage{greek}{a}-SiC}
- \item Production of favored \underline{3C-SiC} material
-       \underline{less advanced}
- \item Quality and size not yet sufficient
-\end{itemize}
-\begin{picture}(0,0)(-310,-20)
-  \includegraphics[width=2.0cm]{cree.eps}
-\end{picture}
-
-\vspace{-0.2cm}
-
-Alternative approach:
-Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
-
-\vspace{0.2cm}
-
-\scriptsize
-
-\framebox{
-\begin{minipage}{3.15cm}
- \begin{center}
-\includegraphics[width=3cm]{imp.eps}\\
- {\tiny
-  Carbon implantation
- }
- \end{center}
-\end{minipage}
-\begin{minipage}{3.15cm}
- \begin{center}
-\includegraphics[width=3cm]{annealing.eps}\\
- {\tiny
- Postannealing at $>$ \degc{1200}
- }
- \end{center}
-\end{minipage}
-}
-\begin{minipage}{5.5cm}
- \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
- \begin{center}
- {\tiny
-  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
- }
- \end{center}
-\end{minipage}
-
-\end{slide}
-
-% contents
-
-\begin{slide}
-
-\headphd
-{\large\bf
- Outline
-}
-
- \begin{itemize}
-  \item Supposed precipitation mechanism of SiC in Si
-  \item Utilized simulation techniques
-        \begin{itemize}
-         \item Molecular dynamics (MD) simulations
-         \item Density functional theory (DFT) calculations
-        \end{itemize}
-  \item C and Si self-interstitial point defects in silicon
-  \item Silicon carbide precipitation simulations
-  \item Summary / Conclusion / Outlook
- \end{itemize}
-
-\end{slide}
-
-\begin{slide}
-
 \headphd
 {\large\bf
Formation of epitaxial single crystalline 3C-SiC
IBS of epitaxial single crystalline 3C-SiC
 }
 
 \footnotesize
@@ -401,7 +266,7 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
         $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
         {\color{blue}precipitates}
  \item \underline{Implantation step 2}\\[0.1cm]
-        Little remaining dose | \unit[180]{keV} | \degc{250}\\
+        Low remaining amount of dose | \unit[180]{keV} | \degc{250}\\
         $\Rightarrow$
         Destruction/Amorphization of precipitates at layer interface
  \item \underline{Annealing}\\[0.1cm]
@@ -410,36 +275,43 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 \end{itemize}
 \end{center}
 
-\begin{minipage}{7cm}
-\includegraphics[width=7cm]{ibs_3c-sic.eps}
+\begin{minipage}{6.9cm}
+\includegraphics[width=7cm]{ibs_3c-sic.eps}\\[-0.4cm]
+\begin{center}
+{\tiny
+ XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
+}
+\end{center}
 \end{minipage}
 \begin{minipage}{5cm}
+\begin{center}
 \begin{pspicture}(0,0)(0,0)
 \rnode{box}{
 \psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
-\begin{minipage}{5.3cm}
+\begin{minipage}{3.3cm}
  \begin{center}
  {\color{blue}
   3C-SiC precipitation\\
   not yet fully understood
  }
  \end{center}
- \vspace*{0.1cm}
- \renewcommand\labelitemi{$\Rightarrow$}
- Details of the SiC precipitation
- \begin{itemize}
-  \item significant technological progress\\
-        in SiC thin film formation
-  \item perspectives for processes relying\\
-        upon prevention of SiC precipitation
- \end{itemize}
+% \vspace*{0.1cm}
+% \renewcommand\labelitemi{$\Rightarrow$}
+% Details of the SiC precipitation
+% \begin{itemize}
+%  \item significant technological progress\\
+%        in SiC thin film formation
+%  \item perspectives for processes relying\\
+%        upon prevention of SiC precipitation
+% \end{itemize}
 \end{minipage}
 }}
-\rput(-6.8,5.4){\pnode{h0}}
-\rput(-3.0,5.4){\pnode{h1}}
+\rput(-5.3,5.5){\pnode{h0}}
+\rput(-1.95,5.5){\pnode{h1}}
 \ncline[linecolor=blue]{-}{h0}{h1}
 \ncline[linecolor=blue]{->}{h1}{box}
 \end{pspicture}
+\end{center}
 \end{minipage}
 
 \end{slide}
@@ -495,7 +367,7 @@ $\rho^*_{\text{Si}}=\unit[97]{\%}$
  \begin{minipage}{4.0cm}
  \begin{center}
  C-Si dimers (dumbbells)\\[-0.1cm]
- on Si interstitial sites
+ on Si lattice sites
  \end{center}
  \end{minipage}
  \hspace{0.1cm}
@@ -673,7 +545,7 @@ r = \unit[2--4]{nm}
 \begin{itemize}
 \item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
  \begin{itemize}
-  \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
+  \item {\color{blue}Substitutionally} incorporated C on regular Si lattice sites
   \item \si{} reacting with further C in cleared volume
  \end{itemize}
 \item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
@@ -683,11 +555,11 @@ r = \unit[2--4]{nm}
  \end{itemize}
  $\Rightarrow$ mobile {\color{red}\ci} opposed to
  stable {\color{blue}\cs{}} configurations
-\item Strained silicon \& Si/SiC heterostructures
+\item Strained Si$_{1-y}$C$_y$/Si heterostructures
       {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
  \begin{itemize}
-  \item {\color{blue}Coherent} SiC precipitates (tensile strain)
-  \item Incoherent SiC (strain relaxation)
+  \item Initial {\color{blue}coherent} SiC structures (tensile strain)
+  \item Incoherent SiC nanocrystals (strain relaxation)
  \end{itemize}
 \end{itemize}
 \vspace{0.1cm}
@@ -705,6 +577,35 @@ r = \unit[2--4]{nm}
 
 \begin{slide}
 
+% contents
+
+\headphd
+{\large\bf
+ Outline
+}
+
+ \begin{itemize}
+  {\color{gray}
+  \item Introduction / Motivation
+  \item Assumed SiC precipitation mechanisms / Controversy
+  }
+  \item Utilized simulation techniques
+        \begin{itemize}
+         \item Molecular dynamics (MD) simulations
+         \item Density functional theory (DFT) calculations
+        \end{itemize}
+  \item Simulation results
+        \begin{itemize}
+         \item C and Si self-interstitial point defects in silicon
+         \item Silicon carbide precipitation simulations
+        \end{itemize}
+  \item Summary / Conclusion
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
 \headphd
 {\large\bf
  Utilized computational methods
@@ -753,7 +654,7 @@ NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
 \hrule
 \begin{itemize}
 \item Code: \textsc{vasp}
-\item Plane wave basis set
+\item Plane wave basis set | $E_{\text{cut}}=\unit[300]{eV}$
 %$\displaystyle
 %\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
 %$\\
@@ -852,13 +753,13 @@ $
 \end{minipage}
 \end{minipage}
 
-\vspace{0.2cm}
+\vspace{0.3cm}
 
-\begin{minipage}[b]{6cm}
+\begin{minipage}[t]{6cm}
 {\bf Defect formation energy}\\
 \framebox{
-$E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
-Particle reservoir: Si \& SiC\\[0.2cm]
+$E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.5cm]
+%Particle reservoir: Si \& SiC\\[0.2cm]
 {\bf Binding energy}\\
 \framebox{
 $
@@ -872,7 +773,8 @@ $
 $E_{\text{b}}<0$: energetically favorable configuration\\
 $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
 \end{minipage}
-\begin{minipage}[b]{6cm}
+\begin{minipage}[t]{6cm}
+\vspace{1.4cm}
 {\bf Migration barrier}
 \footnotesize
 \begin{itemize}
@@ -891,77 +793,6 @@ $E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
 
 \footnotesize
 
-\headphd
-{\large\bf
- Si self-interstitial point defects in silicon\\[0.1cm]
-}
-
-\begin{center}
-\begin{tabular}{l c c c c c}
-\hline
- $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
-\hline
- \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
- Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
-\hline
-\end{tabular}\\[0.4cm]
-\end{center}
-
-\begin{minipage}{3cm}
-\begin{center}
-\underline{Vacancy}\\
-\includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
-\end{center}
-\end{minipage}
-\begin{minipage}{3cm}
-\begin{center}
-\underline{\hkl<1 1 0> DB}\\
-\includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
-\end{center}
-\end{minipage}
-\begin{minipage}{3cm}
-\begin{center}
-\underline{\hkl<1 0 0> DB}\\
-\includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
-\end{center}
-\end{minipage}
-\begin{minipage}{3cm}
-\begin{center}
-\underline{Tetrahedral}\\
-\includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
-\end{center}
-\end{minipage}\\
-
-\underline{Hexagonal} \hspace{2pt}
-\href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
-\framebox{
-\begin{minipage}{2.7cm}
-$E_{\text{f}}^*=4.48\text{ eV}$\\
-\includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
-\end{minipage}
-\begin{minipage}{0.4cm}
-\begin{center}
-$\Rightarrow$
-\end{center}
-\end{minipage}
-\begin{minipage}{2.7cm}
-$E_{\text{f}}=3.96\text{ eV}$\\
-\includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
-\end{minipage}
-}
-\begin{minipage}{5.5cm}
-\begin{center}
-{\tiny nearly T $\rightarrow$ T}\\
-\end{center}
-\includegraphics[width=6.0cm]{nhex_tet.ps}
-\end{minipage}
-
-\end{slide}
-
-\begin{slide}
-
-\footnotesize
-
 \headphd
 {\large\bf
  C interstitial point defects in silicon\\
@@ -1038,173 +869,38 @@ $E_{\text{f}}=5.18\text{ eV}$\\
 
 \headphd
 {\large\bf\boldmath
- C-Si dimer \& bond-centered interstitial configuration
+ C interstitial migration --- ab initio
 }
 
-\footnotesize
+\scriptsize
 
-\vspace{0.1cm}
+\vspace{0.3cm}
 
-\begin{minipage}[t]{4.1cm}
-{\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
+\begin{minipage}{6.8cm}
+\framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
 \begin{minipage}{2.0cm}
-\begin{center}
-\underline{Erhart/Albe}
-\includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
-\end{center}
+\includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
+\end{minipage}
+\begin{minipage}{0.2cm}
+$\rightarrow$
 \end{minipage}
 \begin{minipage}{2.0cm}
-\begin{center}
-\underline{\textsc{vasp}}
-\includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
-\end{center}
-\end{minipage}\\[0.2cm]
-Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
-$\Rightarrow$ $sp$ hybridization\\[0.1cm]
-Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
-$\Rightarrow$ $sp^2$ hybridization
-\begin{center}
-\includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
-{\tiny Charge density isosurface}
-\end{center}
+\includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
 \end{minipage}
 \begin{minipage}{0.2cm}
-\hfill
-\end{minipage}
-\begin{minipage}[t]{8.1cm}
-\begin{flushright}
-{\bf Bond-centered interstitial}\\[0.1cm]
-\begin{minipage}{4.4cm}
-%\scriptsize
-\begin{itemize}
- \item Linear Si-C-Si bond
- \item Si: one C \& 3 Si neighbours
- \item Spin polarized calculations
- \item No saddle point!\\
-       Real local minimum!
-\end{itemize}
-\end{minipage}
-\begin{minipage}{2.7cm}
-%\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
-\vspace{0.2cm}
-\includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
-\end{minipage}
-
-\framebox{
- \tiny
- \begin{minipage}[t]{6.5cm}
-  \begin{minipage}[t]{1.2cm}
-  {\color{red}Si}\\
-  {\tiny sp$^3$}\\[0.8cm]
-  \underline{${\color{black}\uparrow}$}
-  \underline{${\color{black}\uparrow}$}
-  \underline{${\color{black}\uparrow}$}
-  \underline{${\color{red}\uparrow}$}\\
-  sp$^3$
-  \end{minipage}
-  \begin{minipage}[t]{1.4cm}
-  \begin{center}
-  {\color{red}M}{\color{blue}O}\\[0.8cm]
-  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
-  $\sigma_{\text{ab}}$\\[0.5cm]
-  \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
-  $\sigma_{\text{b}}$
-  \end{center}
-  \end{minipage}
-  \begin{minipage}[t]{1.0cm}
-  \begin{center}
-  {\color{blue}C}\\
-  {\tiny sp}\\[0.2cm]
-  \underline{${\color{white}\uparrow\uparrow}$}
-  \underline{${\color{white}\uparrow\uparrow}$}\\
-  2p\\[0.4cm]
-  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
-  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
-  sp
-  \end{center}
-  \end{minipage}
-  \begin{minipage}[t]{1.4cm}
-  \begin{center}
-  {\color{blue}M}{\color{green}O}\\[0.8cm]
-  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
-  $\sigma_{\text{ab}}$\\[0.5cm]
-  \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
-  $\sigma_{\text{b}}$
-  \end{center}
-  \end{minipage}
-  \begin{minipage}[t]{1.2cm}
-  \begin{flushright}
-  {\color{green}Si}\\
-  {\tiny sp$^3$}\\[0.8cm]
-  \underline{${\color{green}\uparrow}$}
-  \underline{${\color{black}\uparrow}$}
-  \underline{${\color{black}\uparrow}$}
-  \underline{${\color{black}\uparrow}$}\\
-  sp$^3$
-  \end{flushright}
-  \end{minipage}
- \end{minipage}
-}\\[0.4cm]
-
-%\framebox{
-\begin{minipage}{3.0cm}
-%\scriptsize
-\underline{Charge density}\\
-{\color{gray}$\bullet$} Spin up\\
-{\color{green}$\bullet$} Spin down\\
-{\color{blue}$\bullet$} Resulting spin up\\
-{\color{yellow}$\bullet$} Si atoms\\
-{\color{red}$\bullet$} C atom
-\end{minipage}
-\begin{minipage}{3.6cm}
-\includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
-\end{minipage}
-%}
-
-\end{flushright}
-
-\end{minipage}
-\begin{pspicture}(0,0)(0,0)
-\psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
-\end{pspicture}
-
-\end{slide}
-
-\begin{slide}
-
-\headphd
-{\large\bf\boldmath
- C interstitial migration --- ab initio
-}
-
-\scriptsize
-
-\vspace{0.1cm}
-
-\begin{minipage}{6.8cm}
-\framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
-\begin{minipage}{2.0cm}
-\includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
-\end{minipage}
-\begin{minipage}{0.2cm}
-$\rightarrow$
-\end{minipage}
-\begin{minipage}{2.0cm}
-\includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
-\end{minipage}
-\begin{minipage}{0.2cm}
-$\rightarrow$
+$\rightarrow$
 \end{minipage}
 \begin{minipage}{2.0cm}
 \includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
 \end{minipage}\\[0.1cm]
-Spin polarization\\
-$\Rightarrow$ BC configuration constitutes local minimum\\
+Symmetry:\\
+$\Rightarrow$ Sufficient to consider \hkl[00-1] to BC transition\\
 $\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
 \end{minipage}
 \begin{minipage}{5.4cm}
 \includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
-\end{minipage}\\[0.2cm]
+%\end{minipage}\\[0.2cm]
+\end{minipage}\\[0.4cm]
 %\hrule
 %
 \begin{minipage}{6.8cm}
@@ -1232,9 +928,9 @@ Note: Change in orientation
 \includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
 \end{minipage}\\[0.1cm]
 %
-\begin{center}
-Reorientation pathway composed of two consecutive processes of the above type
-\end{center}
+%\begin{center}
+%Reorientation pathway composed of two consecutive processes of the above type
+%\end{center}
 
 \end{slide}
 
@@ -1268,7 +964,7 @@ Reorientation pathway composed of two consecutive processes of the above type
 \begin{itemize}
  \item Bond-centered configuration unstable\\
        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
- \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
+ \item Minimum of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
        $\rightarrow$ \ci{} \hkl<1 1 0> DB
 \end{itemize}
 \vspace{0.1cm}
@@ -1295,7 +991,7 @@ Reorientation pathway composed of two consecutive processes of the above type
 
 \headphd
 {\large\bf\boldmath
- Defect combinations
+ Defect combinations --- ab inito
 }
 
 \footnotesize
@@ -1338,17 +1034,23 @@ Reorientation pathway composed of two consecutive processes of the above type
 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
 \begin{minipage}[t]{3.2cm}
 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
+{\color{cyan}
+\framebox{
 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
+}}
 \end{minipage}
 \begin{minipage}[t]{3.0cm}
 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
-\includegraphics[width=2.8cm]{00-1dc/2-39.eps}
+{\color{orange}
+\framebox{
+\includegraphics[width=2.5cm]{00-1dc/2-39.eps}
+}}
 \end{minipage}
 \begin{minipage}[t]{6.1cm}
 \vspace{0.7cm}
 \begin{itemize}
  \item \ci{} agglomeration energetically favorable
- \item Most favorable: C clustering\\
+ \item Most favorable: strong C-C bond\\
        {\color{red}However \ldots}\\
         \ldots high migration barrier ($>4\,\text{eV}$)\\
         \ldots entropy:
@@ -1366,7 +1068,7 @@ Reorientation pathway composed of two consecutive processes of the above type
 
 \headphd
 {\large\bf\boldmath
- Defect combinations
+ Defect combinations --- ab inito
 }
 
 \footnotesize
@@ -1409,11 +1111,17 @@ Reorientation pathway composed of two consecutive processes of the above type
 {\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
 \begin{minipage}[t]{3.2cm}
 \underline{\hkl[1 0 0] at position 1}\\[0.1cm]
+{\color{cyan}
+\framebox{
 \includegraphics[width=2.8cm]{00-1dc/2-25.eps}
+}}
 \end{minipage}
 \begin{minipage}[t]{3.0cm}
 \underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
-\includegraphics[width=2.8cm]{00-1dc/2-39.eps}
+{\color{orange}
+\framebox{
+\includegraphics[width=2.5cm]{00-1dc/2-39.eps}
+}}
 \end{minipage}
 \begin{minipage}[t]{6.1cm}
 \vspace{0.7cm}
@@ -1701,7 +1409,8 @@ Contribution of entropy to structural formation\\[0.1cm]
    \begin{itemize}
     \item total simulation volume {\pnode{in1}}
     \item volume of minimal SiC precipitate size {\pnode{in2}}
-    \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
+    %\item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
+    \item volume containing Si atoms to form a minimal {\pnode{in3}}\\
           precipitate
    \end{itemize} 
   }}}}
@@ -1773,7 +1482,7 @@ $\rightarrow$ Consider $V_2$ and $V_3$
 \begin{minipage}{6.1cm}
 \scriptsize
 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
-\hkl<1 0 0> C-Si dumbbell dominated structure
+\ci{} \hkl<1 0 0> dumbbell dominated structure
 \begin{itemize}
  \item Si-C bumbs around \unit[0.19]{nm}
  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
@@ -1785,7 +1494,7 @@ $\rightarrow$ Consider $V_2$ and $V_3$
 \begin{minipage}{6cm}
 \centering
 Formation of \ci{} dumbbells\\
-C atoms in proper 3C-SiC distance first
+C atoms separated as expected in 3C-SiC
 \end{minipage}
 }}
 \end{pspicture}\\[0.1cm]
@@ -1833,7 +1542,7 @@ Amorphous SiC-like phase
 \begin{minipage}{6.1cm}
 \scriptsize
 \underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
-\hkl<1 0 0> C-Si dumbbell dominated structure
+\ci{} \hkl<1 0 0> dumbbell dominated structure
 \begin{itemize}
  \item Si-C bumbs around \unit[0.19]{nm}
  \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
@@ -1845,7 +1554,7 @@ Amorphous SiC-like phase
 \begin{minipage}{6cm}
 \centering
 Formation of \ci{} dumbbells\\
-C atoms in proper 3C-SiC distance first
+C atoms separated as expected in 3C-SiC
 \end{minipage}
 }}
 \end{pspicture}\\[0.1cm]
@@ -1869,7 +1578,7 @@ Amorphous SiC-like phase
 \begin{minipage}{6cm}
 \vspace{0.1cm}
 \centering
-{\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
+{\bf\color{red}Formation of 3C-SiC fails to appear}\\[0.3cm]
 \begin{minipage}{0.8cm}
 {\bf\boldmath $V_1$:}
 \end{minipage}
@@ -1904,7 +1613,7 @@ No rearrangement/transition into 3C-SiC
 \vspace{0.2cm}
 
 {\bf Time scale problem of MD}\\[0.2cm]
-Precise integration \& thermodynamic sampling\\
+Minimize integration error \& precise thermodynamic sampling\\
 $\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
               $\omega$: vibrational mode\\
 $\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
@@ -1920,8 +1629,7 @@ $\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
 
 {\bf Limitations related to the short range potential}\\[0.2cm]
 Cut-off function limits interaction to next neighbours\\
-$\Rightarrow$ Overestimated unphysical high forces of next neighbours
-              (factor: 2.4--3.4)
+$\Rightarrow$ Overestimated diffusion barrier (factor: 2.4--3.4)
 
 \vspace{1.4cm}
 
@@ -1988,7 +1696,8 @@ equilibrium properties
  \underline{Si-C bonds:}
  \begin{itemize}
   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
-  \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
+  \item Structural change: \ci{} \hkl<1 0 0> DB $\rightarrow$
+        {\color{blue}\cs{}}
  \end{itemize}
  \underline{Si-Si bonds:}
  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
@@ -1996,17 +1705,11 @@ equilibrium properties
  \underline{C-C bonds:}
  \begin{itemize}
   \item C-C next neighbour pairs reduced (mandatory)
-  \item Peak at 0.3 nm slightly shifted
-        \begin{itemize}
-         \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
-               $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
-               combinations (|)\\
-               $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
-               ($\downarrow$)
-         \item Range [|-$\downarrow$]:
-               {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
-               with nearby Si$_{\text{I}}$}
-        \end{itemize}
+  \item Peak at 0.3 nm slightly shifted\\[0.05cm]
+        $\searrow$ \ci{} combinations (dashed arrows)\\
+        $\nearrow$ \ci{} \hkl<1 0 0> \& {\color{blue}\cs{} combinations} (|)\\
+        $\nearrow$ \ci{} pure \cs{} combinations ($\downarrow$)\\[0.05cm]
+        Range [|-$\downarrow$]: {\color{blue}\cs{} \& \cs{} with nearby \si}
  \end{itemize}
 \end{minipage}
 
@@ -2038,7 +1741,8 @@ equilibrium properties
  \underline{Si-C bonds:}
  \begin{itemize}
   \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
-  \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
+  \item Structural change: \ci{} \hkl<1 0 0> DB $\rightarrow$
+        {\color{blue}\cs{}}
  \end{itemize}
  \underline{Si-Si bonds:}
  {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
@@ -2046,17 +1750,11 @@ equilibrium properties
  \underline{C-C bonds:}
  \begin{itemize}
   \item C-C next neighbour pairs reduced (mandatory)
-  \item Peak at 0.3 nm slightly shifted
-        \begin{itemize}
-         \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
-               $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
-               combinations (|)\\
-               $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
-               ($\downarrow$)
-         \item Range [|-$\downarrow$]:
-               {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
-               with nearby Si$_{\text{I}}$}
-        \end{itemize}
+  \item Peak at 0.3 nm slightly shifted\\[0.05cm]
+        $\searrow$ \ci{} combinations (dashed arrows)\\
+        $\nearrow$ \ci{} \hkl<1 0 0> \& {\color{blue}\cs{} combinations} (|)\\
+        $\nearrow$ \ci{} pure \cs{} combinations ($\downarrow$)\\[0.05cm]
+        Range [|-$\downarrow$]: {\color{blue}\cs{} \& \cs{} with nearby \si}
  \end{itemize}
 \end{minipage}
 
@@ -2077,14 +1775,14 @@ equilibrium properties
 {\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
 \end{center}
 \begin{itemize}
-\item Stretched coherent SiC structures\\
-$\Rightarrow$ Precipitation process involves {\color{blue}\cs}
-\item Explains annealing behavior of high/low T C implantations
-      \begin{itemize}
-       \item Low T: highly mobile {\color{red}\ci}
-       \item High T: stable configurations of {\color{blue}\cs}
-      \end{itemize}
-\item Role of \si{}
+\item Stretched coherent SiC structures directly observed\\
+\psframebox[linecolor=blue,linewidth=0.05cm]{
+\begin{minipage}{7cm}
+\centering
+\cs{} involved in the precipitation mechanism\\
+\end{minipage}
+}
+\item Emission of \si{} serves several needs:
       \begin{itemize}
        \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
        \item Building block for surrounding Si host \& further SiC
@@ -2092,16 +1790,18 @@ $\Rightarrow$ Precipitation process involves {\color{blue}\cs}
              \ldots Si/SiC interface\\
              \ldots within stretched coherent SiC structure
       \end{itemize}
-\end{itemize}
-\vspace{0.2cm}
-\centering
+\item Explains annealing behavior of high/low T C implantations
+      \begin{itemize}
+       \item Low T: highly mobile {\color{red}\ci}
+       \item High T: stable configurations of {\color{blue}\cs}
+      \end{itemize}
 \psframebox[linecolor=blue,linewidth=0.05cm]{
 \begin{minipage}{7cm}
 \centering
-Precipitation mechanism involving \cs\\
 High T $\leftrightarrow$ IBS conditions far from equilibrium\\
 \end{minipage}
 }
+\end{itemize}
 \end{minipage}
 \vspace{0.2cm}
 }}
@@ -2109,133 +1809,70 @@ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
 
 \end{slide}
 
-% skip high T / C conc ... only here!
-\ifnum1=0
-
 \begin{slide}
 
- {\large\bf
-  Increased temperature simulations at high C concentration
- }
+\headphd
+{\large\bf
+ Summary and Conclusions
+}
 
 \footnotesize
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{12_pc_thesis.ps}
-\end{minipage}
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
-\end{minipage}
-
 \vspace{0.1cm}
 
-\scriptsize
-
 \framebox{
-\begin{minipage}[t]{6.0cm}
-0.186 nm: Si-C pairs $\uparrow$\\
-(as expected in 3C-SiC)\\[0.2cm]
-0.282 nm: Si-C-C\\[0.2cm]
-$\approx$0.35 nm: C-Si-Si
+\begin{minipage}{12.3cm}
+ \underline{Defects}
+ \begin{itemize}
+   \item DFT / EA
+        \begin{itemize}
+         \item Point defects excellently / fairly well described
+               by DFT / EA
+         \item Identified \ci{} migration path
+         \item EA drastically overestimates the diffusion barrier
+        \end{itemize}
+   \item Combinations of defects (DFT)
+         \begin{itemize}
+          \item Agglomeration of point defects energetically favorable
+          \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
+          \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
+                Low barrier (\unit[0.77]{eV}) \& low capture radius
+        \end{itemize}
+ \end{itemize}
 \end{minipage}
 }
-\begin{minipage}{0.2cm}
-\hfill
-\end{minipage}
+
 \framebox{
-\begin{minipage}[t]{6.0cm}
-0.15 nm: C-C pairs $\uparrow$\\
-(as expected in graphite/diamond)\\[0.2cm]
-0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
-0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
+\begin{minipage}[t]{12.3cm}
+ \underline{Pecipitation simulations}
+ \begin{itemize}
+  \item Problem of potential enhanced slow phase space propagation
+  \item High T necessary to simulate IBS conditions (far from equilibrium)
+  \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
+  \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
+        / Structures of stretched SiC\\
+        $\Rightarrow$
+        \cs{} involved in the precipitation process at elevated temperatures
+  \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
+        (stretched SiC, interface)
+ \end{itemize}
 \end{minipage}
 }
 
-\begin{itemize}
-\item Decreasing cut-off artifact
-\item {\color{red}Amorphous} SiC-like phase remains
-\item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
-\item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
-\end{itemize}
-
-\vspace{-0.1cm}
-
 \begin{center}
-{\color{blue}
-\framebox{
-{\color{black}
-High C \& small $V$ \& short $t$
-$\Rightarrow$
-}
-Slow restructuring due to strong C-C bonds
-{\color{black}
-$\Leftarrow$
-High C \& low T implants
-}
-}
+{\color{blue}\bf
+\framebox{IBS: 3C-SiC precipitation occurs by successive agglomeration of \cs{}}
 }
 \end{center}
 
 \end{slide}
 
-% skipped high T / C conc
-\fi
-
 \begin{slide}
 
+\headphd
 {\large\bf
- Summary / Outlook
-}
-
-\small
-
-\begin{pspicture}(0,0)(12,1.0)
-\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
-\begin{minipage}{11cm}
-{\color{black}Diploma thesis}\\
- \underline{Monte Carlo} simulation modeling the selforganization process\\
- leading to periodic arrays of nanometric amorphous SiC precipitates
-\end{minipage}
-}
-\end{pspicture}\\[0.4cm]
-\begin{pspicture}(0,0)(12,2)
-\psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
-\begin{minipage}{11cm}
-{\color{black}Doctoral studies}\\
- Classical potential \underline{molecular dynamics} simulations \ldots\\
- \underline{Density functional theory} calculations \ldots\\[0.2cm]
- \ldots on defect formation and SiC precipitation in Si
-\end{minipage}
+ Acknowledgements
 }
-\end{pspicture}\\[0.5cm]
-\begin{pspicture}(0,0)(12,3)
-\psframebox[fillstyle=solid,fillcolor=white,linestyle=solid]{
-\begin{minipage}{11cm}
-\vspace{0.2cm}
-{\color{black}\bf How to proceed \ldots}\\[0.1cm]
-MC $\rightarrow$ empirical potential MD $\rightarrow$ Ground-state DFT \ldots
-\begin{itemize}
- \renewcommand\labelitemi{$\ldots$}
- \item beyond LDA/GGA methods \& ground-state DFT
-\end{itemize}
-Investigation of structure \& structural evolution \ldots
-\begin{itemize}
- \renewcommand\labelitemi{$\ldots$}
- \item electronic/optical properties
- \item electronic correlations
- \item non-equilibrium systems
-\end{itemize}
-\end{minipage}
-}
-\end{pspicture}\\[0.5cm]
-
-\end{slide}
-
-\begin{slide}
-
- {\large\bf
-  Acknowledgements
- }
 
  \vspace{0.1cm}
 
@@ -2243,37 +1880,728 @@ Investigation of structure \& structural evolution \ldots
 
  Thanks to \ldots
 
+\begin{minipage}[t]{6cm}
  \underline{Augsburg}
  \begin{itemize}
-  \item Prof. B. Stritzker (accomodation at EP \RM{4})
-  \item Ralf Utermann (EDV)
+  \item Prof. B. Stritzker
+  \item Ralf Utermann
+  \item EP \RM{4}
  \end{itemize}
  
  \underline{Helsinki}
  \begin{itemize}
-  \item Prof. K. Nordlund (MD)
+  \item Prof. K. Nordlund
  \end{itemize}
  
  \underline{Munich}
  \begin{itemize}
-  \item Bayerische Forschungsstiftung (financial support)
+  \item Bayerische Forschungsstiftung
  \end{itemize}
  
  \underline{Paderborn}
  \begin{itemize}
-  \item Prof. J. Lindner (SiC)
-  \item Prof. G. Schmidt (DFT + financial support)
-  \item Dr. E. Rauls (DFT + SiC)
+  \item Prof. J. Lindner
+  \item Prof. G. Schmidt
+  \item Dr. E. Rauls
  \end{itemize}
+\end{minipage}
+\begin{minipage}[t]{6cm}
+\underline{Referees}
+ \begin{itemize}
+  \item PD V. Eyert
+  \item Prof. F. Haider
+ \end{itemize}
+\end{minipage}
 
- \underline{Stuttgart}
+\vspace{0.5cm}
 \begin{center}
 \framebox{
-\bf Thank you for your attention / invitation!
+\Large\bf Thank you for your attention!
 }
 \end{center}
 
 \end{slide}
 
+
+
+
+
+
+
+\begin{slide}
+
+\headphd
+ {\large\bf
+  Polytypes of SiC\\[0.6cm]
+ }
+
+\vspace{0.6cm}
+
+\includegraphics[width=3.8cm]{cubic_hex.eps}\\
+\begin{minipage}{1.9cm}
+{\tiny cubic (twist)}
+\end{minipage}
+\begin{minipage}{2.9cm}
+{\tiny hexagonal (no twist)}
+\end{minipage}
+
+\begin{picture}(0,0)(-150,0)
+ \includegraphics[width=7cm]{polytypes.eps}
+\end{picture}
+
+\vspace{0.6cm}
+
+\footnotesize
+
+\begin{tabular}{l c c c c c c}
+\hline
+ & 3C-SiC & 4H-SiC & 6H-SiC & Si & GaN & Diamond\\
+\hline
+Hardness [Mohs] & \multicolumn{3}{c}{------ 9.6 ------}& 6.5 & - & 10 \\
+Band gap [eV] & 2.36 & 3.23 & 3.03 & 1.12 & 3.39 & 5.5 \\
+Break down field [$10^6$ V/cm] & 4 & 3 & 3.2 & 0.6 & 5 & 10 \\
+Saturation drift velocity [$10^7$ cm/s] & 2.5 & 2.0 & 2.0 & 1 & 2.7 & 2.7 \\
+Electron mobility [cm$^2$/Vs] & 800 & 900 & 400 & 1100 & 900 & 2200 \\
+Hole mobility [cm$^2$/Vs] & 320 & 120 & 90 & 420 & 150 & 1600 \\
+Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
+\hline
+\end{tabular}
+
+\begin{pspicture}(0,0)(0,0)
+\psellipse[linecolor=green](5.7,2.05)(0.4,0.50)
+\end{pspicture}
+\begin{pspicture}(0,0)(0,0)
+\psellipse[linecolor=green](5.6,0.89)(0.4,0.20)
+\end{pspicture}
+\begin{pspicture}(0,0)(0,0)
+\psellipse[linecolor=red](10.45,0.42)(0.4,0.20)
+\end{pspicture}
+
+\end{slide}
+
+\begin{slide}
+
+\footnotesize
+
+\headphd
+{\large\bf
+ Si self-interstitial point defects in silicon\\[0.1cm]
+}
+
+\begin{center}
+\begin{tabular}{l c c c c c}
+\hline
+ $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
+\hline
+ \textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
+ Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
+\hline
+\end{tabular}\\[0.4cm]
+\end{center}
+
+\begin{minipage}{3cm}
+\begin{center}
+\underline{Vacancy}\\
+\includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}{3cm}
+\begin{center}
+\underline{\hkl<1 1 0> DB}\\
+\includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}{3cm}
+\begin{center}
+\underline{\hkl<1 0 0> DB}\\
+\includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}{3cm}
+\begin{center}
+\underline{Tetrahedral}\\
+\includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
+\end{center}
+\end{minipage}\\
+
+\underline{Hexagonal} \hspace{2pt}
+\href{../video/si_self_int_hexa.avi}{$\rhd$}\\[0.1cm]
+\framebox{
+\begin{minipage}{2.7cm}
+$E_{\text{f}}^*=4.48\text{ eV}$\\
+\includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
+\end{minipage}
+\begin{minipage}{0.4cm}
+\begin{center}
+$\Rightarrow$
+\end{center}
+\end{minipage}
+\begin{minipage}{2.7cm}
+$E_{\text{f}}=3.96\text{ eV}$\\
+\includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
+\end{minipage}
+}
+\begin{minipage}{5.5cm}
+\begin{center}
+{\tiny nearly T $\rightarrow$ T}\\
+\end{center}
+\includegraphics[width=6.0cm]{nhex_tet.ps}
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+\headphd
+{\large\bf\boldmath
+ C-Si dimer \& bond-centered interstitial configuration
+}
+
+\footnotesize
+
+\vspace{0.1cm}
+
+\begin{minipage}[t]{4.1cm}
+{\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
+\begin{minipage}{2.0cm}
+\begin{center}
+\underline{Erhart/Albe}
+\includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}{2.0cm}
+\begin{center}
+\underline{\textsc{vasp}}
+\includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
+\end{center}
+\end{minipage}\\[0.2cm]
+Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
+$\Rightarrow$ $sp$ hybridization\\[0.1cm]
+Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
+$\Rightarrow$ $sp^2$ hybridization
+\begin{center}
+\includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
+{\tiny Charge density isosurface}
+\end{center}
+\end{minipage}
+\begin{minipage}{0.2cm}
+\hfill
+\end{minipage}
+\begin{minipage}[t]{8.1cm}
+\begin{flushright}
+{\bf Bond-centered interstitial}\\[0.1cm]
+\begin{minipage}{4.4cm}
+%\scriptsize
+\begin{itemize}
+ \item Linear Si-C-Si bond
+ \item Si: one C \& 3 Si neighbours
+ \item Spin polarized calculations
+ \item No saddle point!\\
+       Real local minimum!
+\end{itemize}
+\end{minipage}
+\begin{minipage}{2.7cm}
+%\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
+\vspace{0.2cm}
+\includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
+\end{minipage}
+
+\framebox{
+ \tiny
+ \begin{minipage}[t]{6.5cm}
+  \begin{minipage}[t]{1.2cm}
+  {\color{red}Si}\\
+  {\tiny sp$^3$}\\[0.8cm]
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{red}\uparrow}$}\\
+  sp$^3$
+  \end{minipage}
+  \begin{minipage}[t]{1.4cm}
+  \begin{center}
+  {\color{red}M}{\color{blue}O}\\[0.8cm]
+  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
+  $\sigma_{\text{ab}}$\\[0.5cm]
+  \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
+  $\sigma_{\text{b}}$
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.0cm}
+  \begin{center}
+  {\color{blue}C}\\
+  {\tiny sp}\\[0.2cm]
+  \underline{${\color{white}\uparrow\uparrow}$}
+  \underline{${\color{white}\uparrow\uparrow}$}\\
+  2p\\[0.4cm]
+  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
+  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
+  sp
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.4cm}
+  \begin{center}
+  {\color{blue}M}{\color{green}O}\\[0.8cm]
+  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
+  $\sigma_{\text{ab}}$\\[0.5cm]
+  \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
+  $\sigma_{\text{b}}$
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.2cm}
+  \begin{flushright}
+  {\color{green}Si}\\
+  {\tiny sp$^3$}\\[0.8cm]
+  \underline{${\color{green}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}
+  \underline{${\color{black}\uparrow}$}\\
+  sp$^3$
+  \end{flushright}
+  \end{minipage}
+ \end{minipage}
+}\\[0.4cm]
+
+%\framebox{
+\begin{minipage}{3.0cm}
+%\scriptsize
+\underline{Charge density}\\
+{\color{gray}$\bullet$} Spin up\\
+{\color{green}$\bullet$} Spin down\\
+{\color{blue}$\bullet$} Resulting spin up\\
+{\color{yellow}$\bullet$} Si atoms\\
+{\color{red}$\bullet$} C atom
+\end{minipage}
+\begin{minipage}{3.6cm}
+\includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
+\end{minipage}
+%}
+
+\end{flushright}
+
+\end{minipage}
+\begin{pspicture}(0,0)(0,0)
+\psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
+\end{pspicture}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Increased temperature simulations at high C concentration
+ }
+
+\footnotesize
+
+\begin{minipage}{6.0cm}
+\includegraphics[width=6.4cm]{12_pc_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.0cm}
+\includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
+\end{minipage}
+
+\vspace{0.1cm}
+
+\scriptsize
+
+\framebox{
+\begin{minipage}[t]{5.5cm}
+0.186 nm: Si-C pairs $\uparrow$\\
+(as expected in 3C-SiC)\\[0.2cm]
+0.282 nm: Si-C-C\\[0.2cm]
+$\approx$0.35 nm: C-Si-Si
+\end{minipage}
+}
+\begin{minipage}{0.1cm}
+\hfill
+\end{minipage}
+\framebox{
+\begin{minipage}[t]{5.9cm}
+0.15 nm: C-C pairs $\uparrow$\\
+(as expected in graphite/diamond)\\[0.2cm]
+0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
+0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
+\end{minipage}
+}
+
+\begin{itemize}
+\item Decreasing cut-off artifact
+\item {\color{red}Amorphous} SiC-like phase remains
+\item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
+\item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
+\end{itemize}
+
+\begin{center}
+{\color{blue}
+\framebox{
+{\color{black}
+High C \& small $V$ \& short $t$
+$\Rightarrow$
+}
+\begin{minipage}{4cm}
+\begin{center}
+Slow structural evolution due to strong C-C bonds
+\end{center}
+\end{minipage}
+{\color{black}
+$\Leftarrow$
+High C \& low T implants
+}
+}
+}
+\end{center}
+
+\end{slide}
+
+
+
+\begin{slide}
+
+ {\large\bf
+  Valuation of a practicable temperature limit
+ }
+
+ \small
+
+\vspace{0.1cm}
+
+\begin{center}
+\framebox{
+{\color{blue}
+Recrystallization is a hard task!
+$\Rightarrow$ Avoid melting!
+}
+}
+\end{center}
+\vspace{0.1cm}
+
+\footnotesize
+
+\begin{minipage}{6.4cm}
+\includegraphics[width=6.4cm]{fe_and_t.ps}
+\end{minipage}
+\begin{minipage}{5.7cm}
+\underline{Melting does not occur instantly after}\\
+\underline{exceeding the melting point $T_{\text{m}}=2450\text{ K}$}
+\begin{itemize}
+\item required transition enthalpy
+\item hysterisis behaviour
+\end{itemize}
+\underline{Heating up c-Si by 1 K/ps}
+\begin{itemize}
+\item transition occurs at $\approx$ 3125 K
+\item $\Delta E=0.58\text{ eV/atom}=55.7\text{ kJ/mole}$\\
+      (literature: 50.2 kJ/mole)
+\end{itemize}
+\end{minipage}
+
+\vspace{0.1cm}
+
+\framebox{
+\begin{minipage}{4cm}
+Initially chosen temperatures:\\
+$1.0 - 1.2 \cdot T_{\text{m}}$
+\end{minipage}
+}
+\begin{minipage}{2cm}
+\begin{center}
+$\Longrightarrow$
+\end{center}
+\end{minipage}
+\framebox{
+\begin{minipage}{5cm}
+Introduced C (defects)\\
+$\rightarrow$ reduction of transition point\\
+$\rightarrow$ melting already at $T_{\text{m}}$
+\end{minipage}
+}
+
+\vspace{0.4cm}
+
+\begin{center}
+\framebox{
+{\color{blue}
+Maximum temperature used: $0.95\cdot T_{\text{m}}$
+}
+}
+\end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Long time scale simulations at maximum temperature
+ }
+
+\small
+
+\vspace{0.1cm}
+\underline{Differences}
+\begin{itemize}
+ \item Temperature set to $0.95 \cdot T_{\text{m}}$
+ \item Cubic insertion volume $\Rightarrow$ spherical insertion volume
+ \item Amount of C atoms: 6000 $\rightarrow$ 5500
+       $\Leftrightarrow r_{\text{prec}}=0.3\text{ nm}$
+ \item Simulation volume: 21 unit cells of c-Si in each direction
+\end{itemize}
+
+\footnotesize
+
+\vspace{0.3cm}
+
+\begin{minipage}[t]{4.3cm}
+\begin{center}
+\underline{Low C concentration, Si-C}
+\includegraphics[width=4.3cm]{c_in_si_95_v1_si-c.ps}\\
+Sharper peaks!
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{4.3cm}
+\begin{center}
+\underline{Low C concentration, C-C}
+\includegraphics[width=4.3cm]{c_in_si_95_v1_c-c.ps}\\
+Sharper peaks!\\
+No C agglomeration!
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{3.4cm}
+\begin{center}
+\underline{High C concentration}
+\includegraphics[width=4.3cm]{c_in_si_95_v2.ps}\\
+No significant changes\\
+iC-Si-Si $\uparrow$\\
+C-Si-C $\downarrow$
+\end{center}
+\end{minipage}
+
+\begin{center}
+\framebox{
+Long time scales and high temperatures most probably not sufficient enough!
+}
+\end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Investigation of a silicon carbide precipitate in silicon
+ }
+
+ \scriptsize
+
+\vspace{0.2cm}
+
+\framebox{
+\scriptsize
+\begin{minipage}{5.3cm}
+\[
+\frac{8}{a_{\text{Si}}^3}(
+\underbrace{21^3 a_{\text{Si}}^3}_{=V}
+-\frac{4}{3}\pi x^3)+
+\underbrace{\frac{4}{y^3}\frac{4}{3}\pi x^3}_{\stackrel{!}{=}5500}
+=21^3\cdot 8
+\]
+\[
+\Downarrow
+\]
+\[
+\frac{8}{a_{\text{Si}}^3}\frac{4}{3}\pi x^3=5500
+\Rightarrow x = \left(\frac{5500 \cdot 3}{32 \pi} \right)^{1/3}a_{\text{Si}}
+\]
+\[
+y=\left(\frac{1}{2} \right)^{1/3}a_{\text{Si}}
+\]
+\end{minipage}
+}
+\begin{minipage}{0.1cm}
+\hfill
+\end{minipage}
+\begin{minipage}{6.3cm}
+\underline{Construction}
+\begin{itemize}
+ \item Simulation volume: 21$^3$ unit cells of c-Si
+ \item Spherical topotactically aligned precipitate\\
+       $r=3.0\text{ nm}$ $\Leftrightarrow$ $\approx$ 5500 C atoms
+ \item Create c-Si but skipped inside sphere\\
+       of radius $x$
+ \item Create 3C-SiC inside sphere of radius $x$\\
+       and lattice constant $y$
+ \item Strong coupling to heat bath ($T=20\,^{\circ}\mathrm{C}$)
+\end{itemize}
+\end{minipage}
+
+\vspace{0.3cm}
+
+\begin{minipage}{6.0cm}
+\includegraphics[width=6cm]{pc_0.ps}
+\end{minipage}
+\begin{minipage}{6.1cm}
+\underline{Results}
+\begin{itemize}
+ \item Slight increase of c-Si lattice constant!
+ \item C-C peaks\\
+       (imply same distanced Si-Si peaks)
+       \begin{itemize}
+        \item New peak at 0.307 nm: 2$^{\text{nd}}$ NN in 3C-SiC
+        \item Bumps ({\color{green}$\downarrow$}):
+              4$^{\text{th}}$ and 6$^{\text{th}}$ NN
+       \end{itemize}
+ \item 3C-SiC lattice constant: 4.34 \AA (bulk: 4.36 \AA)\\
+       $\rightarrow$ compressed precipitate
+ \item Interface tension:\\
+       20.15 eV/nm$^2$ or $3.23 \times 10^{-4}$ J/cm$^2$\\
+       (literature: $2 - 8 \times 10^{-4}$ J/cm$^2$)
+\end{itemize}
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Investigation of a silicon carbide precipitate in silicon
+ }
+
+ \footnotesize
+
+\begin{minipage}{7cm}
+\underline{Appended annealing steps}
+\begin{itemize}
+ \item artificially constructed interface\\
+       $\rightarrow$ allow for rearrangement of interface atoms
+ \item check SiC stability
+\end{itemize}
+\underline{Temperature schedule}
+\begin{itemize}
+ \item rapidly heat up structure up to $2050\,^{\circ}\mathrm{C}$\\
+       (75 K/ps)
+ \item slow heating up to $1.2\cdot T_{\text{m}}=2940\text{ K}$
+       by 1 K/ps\\
+       $\rightarrow$ melting at around 2840 K
+       (\href{../video/sic_prec_120.avi}{$\rhd$})
+ \item cooling down structure at 100 \% $T_{\text{m}}$ (1 K/ps)\\
+       $\rightarrow$ no energetically more favorable struture
+\end{itemize}
+\end{minipage}
+\begin{minipage}{5cm}
+\includegraphics[width=5.5cm]{fe_and_t_sic.ps}
+\end{minipage}
+
+\begin{minipage}{4cm}
+\includegraphics[width=4cm]{sic_prec/melt_01.eps}
+\end{minipage}
+\begin{minipage}{0.2cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4cm}
+\includegraphics[width=4cm]{sic_prec/melt_02.eps}
+\end{minipage}
+\begin{minipage}{0.2cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{3.7cm}
+\includegraphics[width=4cm]{sic_prec/melt_03.eps}
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  DFT parameters
+ }
+
+\scriptsize
+
+\vspace{0.1cm}
+
+Equilibrium lattice constants and cohesive energies
+
+\begin{tabular}{l r c c c c c}
+\hline
+\hline
+ & & USPP, LDA & USPP, GGA & PAW, LDA & PAW, GGA & Exp. \\
+\hline
+Si (dia) & $a$ [\AA] & 5.389 & 5.455 & - & - & 5.429 \\
+         & $\Delta_a$ [\%] & \unit[{\color{green}0.7}]{\%} & \unit[{\color{green}0.5}]{\%} & - & - & - \\
+       & $E_{\text{coh}}$ [eV] & -5.277 & -4.591 & - & - & -4.63 \\
+       & $\Delta_E$ [\%] & \unit[{\color{red}14.0}]{\%} & \unit[{\color{green}0.8}]{\%} & - & - & - \\
+\hline
+C (dia) & $a$ [\AA] & 3.527 & 3.567 & - & - & 3.567 \\
+         & $\Delta_a$ [\%] & \unit[{\color{green}1.1}]{\%} & \unit[{\color{green}0.01}]{\%} & - & - & - \\
+       & $E_{\text{coh}}$ [eV] & -8.812 & -7.703 & - & - & -7.374 \\
+       & $\Delta_E$ [\%] & \unit[{\color{red}19.5}]{\%} & \unit[{\color{orange}4.5}]{\%} & - & - & - \\
+\hline
+3C-SiC & $a$ [\AA] & 4.319 & 4.370 & 4.330 & 4.379 & 4.359 \\
+         & $\Delta_a$ [\%] & \unit[{\color{green}0.9}]{\%} & \unit[{\color{green}0.3}]{\%} & \unit[{\color{green}0.7}]{\%} & \unit[{\color{green}0.5}]{\%} & - \\
+       & $E_{\text{coh}}$ [eV] & -7.318 & -6.426 &  -7.371 & -6.491 & -6.340 \\
+       & $\Delta_E$ [\%] & \unit[{\color{red}15.4}]{\%} & \unit[{\color{green}1.4}]{\%} & \unit[{\color{red}16.3}]{\%} & \unit[{\color{orange}2.4}]{\%} & - \\
+\hline
+\hline
+\end{tabular}
+
+\vspace{0.3cm}
+
+\begin{minipage}{7cm}
+\begin{center}
+\begin{tabular}{l c c c}
+\hline
+\hline
+ & Si (dia) & C (dia) & 3C-SiC \\
+\hline
+$a$ [\AA] & 5.458 & 3.562 & 4.365 \\
+$\Delta_a$ [\%] & 0.5 & 0.1 & 0.1 \\
+\hline
+$E_{\text{coh}}$ [eV] & -4.577 & -7.695 & -6.419 \\
+$\Delta_E$ [\%] & 1.1 & 4.4 & 1.2 \\
+\hline
+\hline
+\end{tabular}
+\end{center}
+\end{minipage}
+\begin{minipage}{5cm}
+$\leftarrow$ entire parameter set
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  DFT parameters\\
+ }
+
+\footnotesize
+
+\begin{minipage}{6cm}
+\begin{center}
+\includegraphics[width=6cm]{sic_32pc_gamma_cutoff_lc.ps}
+\end{center}
+\end{minipage}
+\begin{minipage}{6cm}
+\begin{center}
+Lattice constants with respect to the PW cut-off energy
+\end{center}
+\end{minipage}
+
+\begin{minipage}{6cm}
+\begin{center}
+\includegraphics[width=6cm]{si_self_int_thesis.ps}
+\end{center}
+\end{minipage}
+\begin{minipage}{6cm}
+\begin{center}
+Defect formation energy with respect to the size of the supercell\\[0.1cm]
+\end{center}
+
+\end{minipage}
+
+\end{slide}
+
 \end{document}