small minor changes
[lectures/latex.git] / posic / talks / mpi_app.tex
index fedd211..11274be 100644 (file)
@@ -7,6 +7,7 @@
 \usepackage[latin1]{inputenc}
 \usepackage[T1]{fontenc}
 \usepackage{amsmath}
+\usepackage{stmaryrd}
 \usepackage{latexsym}
 \usepackage{ae}
 
@@ -20,6 +21,7 @@
 
 \usepackage{pstricks}
 \usepackage{pst-node}
+\usepackage{pst-grad}
 
 %\usepackage{epic}
 %\usepackage{eepic}
 
 \usepackage{upgreek}
 
+%\newrgbcolor{hred}{0.9 0.13 0.13}
+%\newrgbcolor{hblue}{0.13 0.13 0.9}
+\newrgbcolor{hred}{1.0 0.0 0.0}
+\newrgbcolor{hblue}{0.0 0.0 1.0}
+
+\newcommand{\headdiplom}{
+\begin{pspicture}(0,0)(0,0)
+\rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
+\begin{minipage}{14cm}
+\hfill
+\vspace{0.7cm}
+\end{minipage}
+}}
+\end{pspicture}
+}
+
+\newcommand{\headphd}{
+\begin{pspicture}(0,0)(0,0)
+\rput(6.0,0.2){\psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradlines=1000,gradmidpoint=1,linestyle=none]{
+\begin{minipage}{14cm}
+\hfill
+\vspace{0.7cm}
+\end{minipage}
+}}
+\end{pspicture}
+}
+
 \begin{document}
 
 \extraslideheight{10in}
@@ -146,8 +175,6 @@ E\\
 % no vertical centering
 \centerslidesfalse
 
-%\ifnum1=0
-
 % intro
 
 \begin{slide}
@@ -403,18 +430,18 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 \end{center}
 
 \begin{pspicture}(0,0)(0,0)
-\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
 \begin{minipage}{11cm}
-{\color{red}Diploma thesis}\\
+{\color{black}Diploma thesis}\\
  \underline{Monte Carlo} simulation modeling the selforganization process\\
  leading to periodic arrays of nanometric amorphous SiC precipitates
 \end{minipage}
 }}}
 \end{pspicture}
 \begin{pspicture}(0,0)(0,0)
-\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
 \begin{minipage}{11cm}
-{\color{blue}Doctoral studies}\\
+{\color{black}Doctoral studies}\\
  Classical potential \underline{molecular dynamics} simulations \ldots\\
  \underline{Density functional theory} calculations \ldots\\[0.2cm]
  \ldots on defect formation and SiC precipitation in Si
@@ -432,6 +459,7 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 
 \begin{slide}
 
+\headdiplom
 {\large\bf
  Selforganization of nanometric amorphous SiC lamellae
 }
@@ -453,7 +481,8 @@ Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 \begin{minipage}{12cm}
 \includegraphics[width=9cm]{../../nlsop/img/k393abild1_e_l.eps}\\
 {\scriptsize
-XTEM bright-field, \unit[180]{keV} C$^+ \rightarrow$ Si, \degc{150},
+XTEM bright-field, \unit[180]{keV} C$^+ \rightarrow$ Si,
+{\color{red}\underline{\degc{150}}},
 Dose: \unit[4.3 $\times 10^{17}$]{cm$^{-2}$}
 }
 \end{minipage}
@@ -473,6 +502,7 @@ XTEM bright-field and respective EFTEM C map
 
 \begin{slide}
 
+\headdiplom
 {\large\bf
  Model displaying the formation of ordered lamellae
 }
@@ -509,6 +539,7 @@ XTEM bright-field and respective EFTEM C map
 
 \begin{slide}
 
+\headdiplom
 {\large\bf
  Implementation of the Monte Carlo code
 }
@@ -554,38 +585,46 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
 \begin{slide}
 
 \begin{minipage}{3.7cm}
+\begin{pspicture}(0,0)(0,0)
+\rput(1.7,0.2){\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradangle=10,gradmidpoint=1,linestyle=none]{
+\begin{minipage}{3.7cm}
+\hfill
+\vspace{0.7cm}
+\end{minipage}
+}}
+\end{pspicture}
 {\large\bf
  Results
 }
 
 \footnotesize
 
-\vspace{1.0cm}
+\vspace{1.2cm}
 
 Evolution of the \ldots
 \begin{itemize}
  \item continuous\\
        amorphous layer
  \item a/c interface
- \item lamella precipitates
+ \item lamellar precipitates
 \end{itemize}
-\ldots reproduced!\\[1.5cm]
+\ldots reproduced!\\[1.4cm]
 
 {\color{blue}
 \begin{center}
 Experiment \& simulation\\
 in good agreement\\[1.0cm]
 
-Simulation is able to model the whole depth region\\[1.0cm]
+Simulation is able to model the whole depth region\\[1.2cm]
 \end{center}
 }
 
 \end{minipage}
-\begin{minipage}{0.4cm}
+\begin{minipage}{0.5cm}
 \vfill
 \end{minipage}
 \begin{minipage}{8.0cm}
- \vspace{-0.2cm}
+ \vspace{-0.3cm}
  \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e_1-2.eps}\\
  \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e2_2-2.eps}
 \end{minipage}
@@ -594,6 +633,7 @@ Simulation is able to model the whole depth region\\[1.0cm]
 
 \begin{slide}
 
+\headdiplom
 {\large\bf
  Structural \& compositional details
 }
@@ -618,7 +658,7 @@ Simulation is able to model the whole depth region\\[1.0cm]
  \item C accumulation in the amorphous phase / Origin of stress
 \end{itemize}
 
-\begin{picture}(0,0)(-265,-30)
+\begin{picture}(0,0)(-260,-50)
 \framebox{
 \begin{minipage}{3cm}
 \begin{center}
@@ -634,82 +674,130 @@ by simulation!
 
 \end{slide}
 
-
-\end{document}
-
-% continue here
-\fi
-
-\ifnum1=0
-
 \begin{slide}
 
+\headphd
 {\large\bf
- Model displaying the formation of ordered lamellae
+ Formation of epitaxial single crystalline 3C-SiC
 }
 
-\framebox{
- \begin{minipage}{6.3cm}
+\footnotesize
+
+\vspace{0.2cm}
+
+\begin{center}
+\begin{itemize}
+ \item \underline{Implantation step 1}\\[0.1cm]
+        Almost stoichiometric dose | \unit[180]{keV} | \degc{500}\\
+        $\Rightarrow$ Epitaxial {\color{blue}3C-SiC} layer \&
+        {\color{blue}precipitates}
+ \item \underline{Implantation step 2}\\[0.1cm]
+        Little remaining dose | \unit[180]{keV} | \degc{250}\\
+        $\Rightarrow$
+        Destruction/Amorphization of precipitates at layer interface
+ \item \underline{Annealing}\\[0.1cm]
+       \unit[10]{h} at \degc{1250}\\
+       $\Rightarrow$ Homogeneous 3C-SiC layer with sharp interfaces
+\end{itemize}
+\end{center}
+
+\begin{minipage}{7cm}
+\includegraphics[width=7cm]{ibs_3c-sic.eps}
+\end{minipage}
+\begin{minipage}{5cm}
+\begin{pspicture}(0,0)(0,0)
+\rnode{box}{
+\psframebox[fillstyle=solid,fillcolor=white,linecolor=blue,linestyle=solid]{
+\begin{minipage}{5.3cm}
  \begin{center}
  {\color{blue}
-  Precipitation mechanism not yet fully understood!
+  3C-SiC precipitation\\
+  not yet fully understood
  }
+ \end{center}
+ \vspace*{0.1cm}
  \renewcommand\labelitemi{$\Rightarrow$}
- \small
- \underline{Understanding the SiC precipitation}
+ Details of the SiC precipitation
  \begin{itemize}
-  \item significant technological progress in SiC thin film formation
-  \item perspectives for processes relying upon prevention of SiC precipitation
+  \item significant technological progress\\
+        in SiC thin film formation
+  \item perspectives for processes relying\\
+        upon prevention of SiC precipitation
  \end{itemize}
- \end{center}
- \end{minipage}
-}
+\end{minipage}
+}}
+\rput(-6.8,5.4){\pnode{h0}}
+\rput(-3.0,5.4){\pnode{h1}}
+\ncline[linecolor=blue]{-}{h0}{h1}
+\ncline[linecolor=blue]{->}{h1}{box}
+\end{pspicture}
+\end{minipage}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf
+\headphd
+{\large\bf
   Supposed precipitation mechanism of SiC in Si
- }
+}
 
  \scriptsize
 
  \vspace{0.1cm}
 
- \begin{minipage}{3.8cm}
- Si \& SiC lattice structure\\[0.2cm]
- \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
- \hrule
+ \framebox{
+ \begin{minipage}{3.6cm}
+ \begin{center}
+ Si \& SiC lattice structure\\[0.1cm]
+ \includegraphics[width=2.3cm]{sic_unit_cell.eps}
+ \end{center}
+{\tiny
+ \begin{minipage}{1.7cm}
+\underline{Silicon}\\
+{\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
+$a=\unit[5.429]{\\A}$\\
+$\rho^*_{\text{Si}}=\unit[100]{\%}$
+ \end{minipage}
+ \begin{minipage}{1.7cm}
+\underline{Silicon carbide}\\
+{\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
+$a=\unit[4.359]{\\A}$\\
+$\rho^*_{\text{Si}}=\unit[97]{\%}$
+ \end{minipage}
+}
  \end{minipage}
- \hspace{0.6cm}
- \begin{minipage}{3.8cm}
+ }
+ \hspace{0.1cm}
+ \begin{minipage}{4.1cm}
  \begin{center}
  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
  \end{center}
  \end{minipage}
- \hspace{0.6cm}
- \begin{minipage}{3.8cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.0cm}
  \begin{center}
  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
  \end{center}
  \end{minipage}
 
- \begin{minipage}{4cm}
+ \vspace{0.1cm}
+
+ \begin{minipage}{4.0cm}
  \begin{center}
  C-Si dimers (dumbbells)\\[-0.1cm]
  on Si interstitial sites
  \end{center}
  \end{minipage}
- \hspace{0.2cm}
- \begin{minipage}{4.2cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.1cm}
  \begin{center}
  Agglomeration of C-Si dumbbells\\[-0.1cm]
  $\Rightarrow$ dark contrasts
  \end{center}
  \end{minipage}
- \hspace{0.2cm}
- \begin{minipage}{4cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.0cm}
  \begin{center}
  Precipitation of 3C-SiC in Si\\[-0.1cm]
  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
@@ -717,37 +805,39 @@ by simulation!
  \end{center}
  \end{minipage}
 
- \begin{minipage}{3.8cm}
+ \vspace{0.1cm}
+
+ \begin{minipage}{4.0cm}
  \begin{center}
  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
  \end{center}
  \end{minipage}
- \hspace{0.6cm}
- \begin{minipage}{3.8cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.1cm}
  \begin{center}
  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
  \end{center}
  \end{minipage}
- \hspace{0.6cm}
- \begin{minipage}{3.8cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.0cm}
  \begin{center}
  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
  \end{center}
  \end{minipage}
 
 \begin{pspicture}(0,0)(0,0)
-\psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
-\psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
-\rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
-\psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
-\rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+\psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
+\psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
+\rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
+\psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
+\rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
  $4a_{\text{Si}}=5a_{\text{SiC}}$
  }}}
-\rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+\rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
 \hkl(h k l) planes match
  }}}
-\rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
-r = 2 - 4 nm
+\rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+r = \unit[2--4]{nm}
  }}}
 \end{pspicture}
 
@@ -755,47 +845,67 @@ r = 2 - 4 nm
 
 \begin{slide}
 
- {\large\bf
-  Supposed precipitation mechanism of SiC in Si
- }
+\headphd
+{\large\bf
+ Supposed precipitation mechanism of SiC in Si
+}
 
  \scriptsize
 
  \vspace{0.1cm}
 
- \begin{minipage}{3.8cm}
- Si \& SiC lattice structure\\[0.2cm]
- \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
- \hrule
+ \framebox{
+ \begin{minipage}{3.6cm}
+ \begin{center}
+ Si \& SiC lattice structure\\[0.1cm]
+ \includegraphics[width=2.3cm]{sic_unit_cell.eps}
+ \end{center}
+{\tiny
+ \begin{minipage}{1.7cm}
+\underline{Silicon}\\
+{\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} Si\\
+$a=\unit[5.429]{\\A}$\\
+$\rho^*_{\text{Si}}=\unit[100]{\%}$
+ \end{minipage}
+ \begin{minipage}{1.7cm}
+\underline{Silicon carbide}\\
+{\color{yellow}$\bullet$} Si | {\color{gray}$\bullet$} C\\
+$a=\unit[4.359]{\\A}$\\
+$\rho^*_{\text{Si}}=\unit[97]{\%}$
+ \end{minipage}
+}
  \end{minipage}
- \hspace{0.6cm}
- \begin{minipage}{3.8cm}
+ }
+ \hspace{0.1cm}
+ \begin{minipage}{4.1cm}
  \begin{center}
  \includegraphics[width=3.3cm]{tem_c-si-db.eps}
  \end{center}
  \end{minipage}
- \hspace{0.6cm}
- \begin{minipage}{3.8cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.0cm}
  \begin{center}
  \includegraphics[width=3.3cm]{tem_3c-sic.eps}
  \end{center}
  \end{minipage}
 
- \begin{minipage}{4cm}
+ \vspace{0.1cm}
+
+ \begin{minipage}{4.0cm}
  \begin{center}
  C-Si dimers (dumbbells)\\[-0.1cm]
  on Si interstitial sites
  \end{center}
  \end{minipage}
- \hspace{0.2cm}
- \begin{minipage}{4.2cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.1cm}
  \begin{center}
  Agglomeration of C-Si dumbbells\\[-0.1cm]
  $\Rightarrow$ dark contrasts
  \end{center}
  \end{minipage}
- \hspace{0.2cm}
- \begin{minipage}{4cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.0cm}
  \begin{center}
  Precipitation of 3C-SiC in Si\\[-0.1cm]
  $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
@@ -803,60 +913,81 @@ r = 2 - 4 nm
  \end{center}
  \end{minipage}
 
- \begin{minipage}{3.8cm}
+ \vspace{0.1cm}
+
+ \begin{minipage}{4.0cm}
  \begin{center}
  \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
  \end{center}
  \end{minipage}
- \hspace{0.6cm}
- \begin{minipage}{3.8cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.1cm}
  \begin{center}
  \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
  \end{center}
  \end{minipage}
- \hspace{0.6cm}
- \begin{minipage}{3.8cm}
+ \hspace{0.1cm}
+ \begin{minipage}{4.0cm}
  \begin{center}
  \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
  \end{center}
  \end{minipage}
 
 \begin{pspicture}(0,0)(0,0)
-\psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
-\psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
-\rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
-\psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
-\rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+\psline[linewidth=2pt]{->}(8.3,2)(8.8,2)
+\psellipse[linecolor=blue](11.1,6.0)(0.3,0.5)
+\rput{-20}{\psellipse[linecolor=blue](3.1,8.2)(0.3,0.5)}
+\psline[linewidth=2pt]{->}(3.9,2)(4.4,2)
+\rput(11.8,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
  $4a_{\text{Si}}=5a_{\text{SiC}}$
  }}}
-\rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+\rput(11.5,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
 \hkl(h k l) planes match
  }}}
-\rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
-r = 2 - 4 nm
+\rput(8.5,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+r = \unit[2--4]{nm}
  }}}
-\rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+% controversial view!
+\rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
+\begin{minipage}{14cm}
+\hfill
+\vspace{12cm}
+\end{minipage}
+}}
+\rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
 \begin{minipage}{10cm}
 \small
-{\color{red}\bf Controversial views}
+\vspace*{0.2cm}
+\begin{center}
+{\color{gray}\bf Controversial findings}
+\end{center}
 \begin{itemize}
-\item Implantations at high T (Nejim et al.)
+\item High-temperature implantation {\tiny\color{gray}/Nejim~et~al./}
  \begin{itemize}
-  \item Topotactic transformation based on \cs
-  \item \si{} as supply reacting with further C in cleared volume
+  \item C incorporated {\color{blue}substitutionally} on regular Si lattice sites
+  \item \si{} reacting with further C in cleared volume
  \end{itemize}
-\item Annealing behavior (Serre et al.)
+\item Annealing behavior {\tiny\color{gray}/Serre~et~al./}
  \begin{itemize}
-  \item Room temperature implants $\rightarrow$ highly mobile C
-  \item Elevated T implants $\rightarrow$ no/low C redistribution/migration\\
-        (indicate stable \cs{} configurations)
+  \item Room temperature implantation $\rightarrow$ high C diffusion
+  \item Elevated temperature implantation $\rightarrow$ no C redistribution
  \end{itemize}
+ $\Rightarrow$ mobile {\color{red}\ci} opposed to
+ stable {\color{blue}\cs{}} configurations
 \item Strained silicon \& Si/SiC heterostructures
+      {\tiny\color{gray}/Strane~et~al./Guedj~et~al./}
  \begin{itemize}
-  \item Coherent SiC precipitates (tensile strain)
+  \item {\color{blue}Coherent} SiC precipitates (tensile strain)
   \item Incoherent SiC (strain relaxation)
  \end{itemize}
 \end{itemize}
+\vspace{0.1cm}
+\begin{center}
+{\Huge${\lightning}$} \hspace{0.3cm}
+{\color{blue}\cs{}} --- vs --- {\color{red}\ci} \hspace{0.3cm}
+{\Huge${\lightning}$}
+\end{center}
+\vspace{0.2cm}
 \end{minipage}
  }}}
 \end{pspicture}
@@ -865,160 +996,110 @@ r = 2 - 4 nm
 
 \begin{slide}
 
- {\large\bf
-  Molecular dynamics (MD) simulations
- }
-
- \vspace{12pt}
+\headphd
+{\large\bf
+ Utilized computational methods
+}
 
- \small
+\vspace{0.3cm}
 
- {\bf MD basics:}
- \begin{itemize}
-  \item Microscopic description of N particle system
-  \item Analytical interaction potential
-  \item Numerical integration using Newtons equation of motion\\
-        as a propagation rule in 6N-dimensional phase space
-  \item Observables obtained by time and/or ensemble averages
- \end{itemize}
- {\bf Details of the simulation:}
- \begin{itemize}
-  \item Integration: Velocity Verlet, timestep: $1\text{ fs}$
-  \item Ensemble: NpT (isothermal-isobaric)
-        \begin{itemize}
-         \item Berendsen thermostat:
-               $\tau_{\text{T}}=100\text{ fs}$
-         \item Berendsen barostat:\\
-               $\tau_{\text{P}}=100\text{ fs}$,
-               $\beta^{-1}=100\text{ GPa}$
-        \end{itemize}
-  \item Erhart/Albe potential: Tersoff-like bond order potential
-  \vspace*{12pt}
-        \[
-        E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
-        \pot_{ij} = {\color{red}f_C(r_{ij})}
-        \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
-        \]
- \end{itemize}
+\small
 
- \begin{picture}(0,0)(-230,-30)
-  \includegraphics[width=5cm]{tersoff_angle.eps} 
- \end{picture}
-\end{slide}
+{\bf Molecular dynamics (MD)}\\[0.1cm]
+\scriptsize
+\begin{tabular}{| p{4.5cm} | p{7.5cm} |}
+\hline
+System of $N$ particles &
+$N=5832\pm 1$ (Defects), $N=238328+6000$ (Precipitation)\\
+Phase space propagation &
+Velocity Verlet | timestep: \unit[1]{fs} \\
+Analytical interaction potential &
+Tersoff-like {\color{red}short-range}, {\color{blue}bond order} potential
+(Erhart/Albe)
+$\displaystyle
+E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
+    \pot_{ij} = {\color{red}f_C(r_{ij})}
+    \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
+$\\
+Observables: time/ensemble averages &
+NpT (isothermal-isobaric) | Berendsen thermostat/barostat\\
+\hline
+\end{tabular}
 
-\begin{slide}
+\small
 
- {\large\bf
-  Density functional theory (DFT) calculations
- }
+\vspace{0.3cm}
 
- \small
+{\bf Density functional theory (DFT)}
 
- Basic ingredients necessary for DFT
+\scriptsize
 
- \begin{itemize}
-  \item \underline{Hohenberg-Kohn theorem} - ground state density $n_0(r)$ ...
-        \begin{itemize}
-         \item ... uniquely determines the ground state potential
-               / wavefunctions
-         \item ... minimizes the systems total energy
-        \end{itemize}
-  \item \underline{Born-Oppenheimer}
-        - $N$ moving electrons in an external potential of static nuclei
-\[
-H\Psi = \left[-\sum_i^N \frac{\hbar^2}{2m}\nabla_i^2
-              +\sum_i^N V_{\text{ext}}(r_i)
-              +\sum_{i<j}^N V_{e-e}(r_i,r_j)\right]\Psi=E\Psi
-\]
-  \item \underline{Effective potential}
-        - averaged electrostatic potential \& exchange and correlation
-\[
+\begin{minipage}[t]{6cm}
+\begin{itemize}
+ \item Hohenberg-Kohn theorem:\\
+       $\Psi_0(r_1,r_2,\ldots,r_N)=\Psi[n_0(r)]$, $E_0=E[n_0]$
+ \item Kohn-Sham approach:\\
+       Single-particle effective theory
+\end{itemize}
+\hrule
+\begin{itemize}
+\item Code: \textsc{vasp}
+\item Plane wave basis set
+%$\displaystyle
+%\Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_{i,k+G} \exp{\left(i(k+G)r\right)}
+%$\\
+%$\displaystyle
+%E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}=\unit[300]{eV}
+%$
+\item Ultrasoft pseudopotential
+\item Exchange \& correlation: GGA
+\item Brillouin zone sampling: $\Gamma$-point
+\item Supercell: $N=216\pm2$
+\end{itemize}
+\end{minipage}
+\begin{minipage}{6cm}
+\begin{pspicture}(0,0)(0,0)
+\pscircle[fillcolor=yellow,fillstyle=solid,linestyle=none](3.5,-2.0){2.5}
+\rput(2.7,-0.7){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
+$\displaystyle
+\left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) - \epsilon_i \right] \Phi_i(r) = 0
+$
+}}
+\rput(5.2,-2.0){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
+$\displaystyle
+n(r)=\sum_i^N|\Phi_i(r)|^2
+$
+}}
+\rput(3.0,-4.5){\psframebox[fillstyle=solid,opacity=0.8,fillcolor=white]{
+$\displaystyle
 V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
                  +V_{\text{XC}}[n(r)]
-\]
-  \item \underline{Kohn-Sham system}
-        - Schr\"odinger equation of N non-interacting particles
-\[
-\left[ -\frac{\hbar^2}{2m}\nabla^2 + V_{\text{eff}}(r) \right] \Phi_i(r)
-=\epsilon_i\Phi_i(r)
-\quad
-\Rightarrow
-\quad
-n(r)=\sum_i^N|\Phi_i(r)|^2
-\]
-  \item \underline{Self-consistent solution}\\
-$n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
-which in turn depends on $n(r)$
-  \item \underline{Variational principle}
-        - minimize total energy with respect to $n(r)$
- \end{itemize}
-
-\end{slide}
-
-\begin{slide}
-
- {\large\bf
-  Density functional theory (DFT) calculations
- }
-
- \small
-
- \vspace*{0.2cm}
-
- Details of applied DFT calculations in this work
-
- \begin{itemize}
-  \item \underline{Exchange correlation functional}
-        - approximations for the inhomogeneous electron gas
-        \begin{itemize}
-         \item LDA: $E_{\text{XC}}^{\text{LDA}}[n]=\int \epsilon_{\text{XC}}(n)n(r)d^3r$
-         \item GGA: $E_{\text{XC}}^{\text{GGA}}[n]=\int \epsilon_{\text{XC}}(n,\nabla n)n(r)d^3r$
-        \end{itemize}
-  \item \underline{Plane wave basis set}
-        - approximation of the wavefunction $\Phi_i$ by plane waves $\phi_j$
-\[
-\rightarrow
-\text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
-\qquad ({\color{blue}300\text{ eV}})
-\]
-  \item \underline{Brillouin zone sampling} -
-        {\color{blue}$\Gamma$-point only} calculations
-  \item \underline{Pseudo potential} 
-        - consider only the valence electrons
-  \item \underline{Code} - VASP 4.6
- \end{itemize}
-
- \vspace*{0.2cm}
-
- MD and structural optimization
-
- \begin{itemize}
-  \item MD integration: Gear predictor corrector algorithm
-  \item Pressure control: Parrinello-Rahman pressure control
-  \item Structural optimization: Conjugate gradient method
- \end{itemize}
+$
+}}
+\psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{130}{15}
+\psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{230}{165}
+\psarcn[linewidth=0.07cm,linestyle=dashed]{->}(3.5,-2.0){2.5}{345}{310}
 
-\begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
 \end{pspicture}
+\end{minipage}
 
 \end{slide}
 
 \begin{slide}
 
+\headphd
  {\large\bf
-  C and Si self-interstitial point defects in silicon
+  Point defects \& defect migration
  }
 
  \small
 
- \vspace*{0.3cm}
+ \vspace{0.2cm}
 
-\begin{minipage}{8cm}
-Procedure:\\[0.3cm]
-  \begin{pspicture}(0,0)(7,5)
-  \rput(3.5,4){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+\begin{minipage}[b]{7.5cm}
+{\bf Defect structure}\\
+  \begin{pspicture}(0,0)(7,4.4)
+  \rput(3.5,3.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
    \parbox{7cm}{
    \begin{itemize}
     \item Creation of c-Si simulation volume
@@ -1026,13 +1107,13 @@ Procedure:\\[0.3cm]
     \item $T=0\text{ K}$, $p=0\text{ bar}$
    \end{itemize}
   }}}}
-\rput(3.5,2.1){\rnode{insert}{\psframebox{
+\rput(3.5,1.3){\rnode{insert}{\psframebox{
  \parbox{7cm}{
   \begin{center}
   Insertion of interstitial C/Si atoms
   \end{center}
   }}}}
-  \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
+  \rput(3.5,0.2){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
    \parbox{7cm}{
    \begin{center}
    Relaxation / structural energy minimization
@@ -1042,58 +1123,104 @@ Procedure:\\[0.3cm]
   \ncline[]{->}{insert}{cool}
  \end{pspicture}
 \end{minipage}
-\begin{minipage}{5cm}
-  \includegraphics[width=5cm]{unit_cell_e.eps}\\
+\begin{minipage}[b]{4.5cm}
+\begin{center}
+\includegraphics[width=3.8cm]{unit_cell_e.eps}\\
+\end{center}
+\begin{minipage}{2.21cm}
+{\scriptsize
+{\color{red}$\bullet$} Tetrahedral\\[-0.1cm]
+{\color{green}$\bullet$} Hexagonal\\[-0.1cm]
+{\color{yellow}$\bullet$} \hkl<1 0 0> DB
+}
+\end{minipage}
+\begin{minipage}{2.21cm}
+{\scriptsize
+{\color{magenta}$\bullet$} \hkl<1 1 0> DB\\[-0.1cm]
+{\color{cyan}$\bullet$} Bond-centered\\[-0.1cm]
+{\color{black}$\bullet$} Vac. / Sub.
+}
+\end{minipage}
 \end{minipage}
 
-\begin{minipage}{9cm}
- \begin{tabular}{l c c}
- \hline
- & size [unit cells] & \# atoms\\
-\hline
-VASP & $3\times 3\times 3$ & $216\pm 1$ \\
-Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
-\hline
- \end{tabular}
+\vspace{0.2cm}
+
+\begin{minipage}[b]{6cm}
+{\bf Defect formation energy}\\
+\framebox{
+$E_{\text{f}}=E-\sum_i N_i\mu_i$}\\[0.1cm]
+Particle reservoir: Si \& SiC\\[0.2cm]
+{\bf Binding energy}\\
+\framebox{
+$
+E_{\text{b}}=
+E_{\text{f}}^{\text{comb}}-
+E_{\text{f}}^{1^{\text{st}}}-
+E_{\text{f}}^{2^{\text{nd}}}
+$
+}\\[0.1cm]
+\footnotesize
+$E_{\text{b}}<0$: energetically favorable configuration\\
+$E_{\text{b}}\rightarrow 0$: non-interacting, isolated defects\\
 \end{minipage}
-\begin{minipage}{4cm}
-{\color{red}$\bullet$} Tetrahedral\\
-{\color{green}$\bullet$} Hexagonal\\
-{\color{yellow}$\bullet$} \hkl<1 0 0> dumbbell\\
-{\color{magenta}$\bullet$} \hkl<1 1 0> dumbbell\\
-{\color{cyan}$\bullet$} Bond-centered\\
-{\color{black}$\bullet$} Vacancy / Substitutional
+\begin{minipage}[b]{6cm}
+{\bf Migration barrier}
+\footnotesize
+\begin{itemize}
+ \item Displace diffusing atom
+ \item Constrain relaxation of (diffusing) atoms
+ \item Record configurational energy
+\end{itemize}
+\begin{picture}(0,0)(-60,-33)
+\includegraphics[width=4.5cm]{crt_mod.eps}
+\end{picture}
 \end{minipage}
 
 \end{slide}
 
 \begin{slide}
 
- \footnotesize
-
-\begin{minipage}{9.5cm}
+\footnotesize
 
- {\large\bf
-  Si self-interstitial point defects in silicon\\
- }
+\headphd
+{\large\bf
+ Si self-interstitial point defects in silicon\\[0.1cm]
+}
 
+\begin{center}
 \begin{tabular}{l c c c c c}
 \hline
  $E_{\text{f}}$ [eV] & \hkl<1 1 0> DB & H & T & \hkl<1 0 0> DB & V \\
 \hline
VASP & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
\textsc{vasp} & \underline{3.39} & 3.42 & 3.77 & 4.41 & 3.63 \\
  Erhart/Albe & 4.39 & 4.48$^*$ & \underline{3.40} & 5.42 & 3.13 \\
 \hline
-\end{tabular}\\[0.2cm]
+\end{tabular}\\[0.4cm]
+\end{center}
 
-\begin{minipage}{4.7cm}
-\includegraphics[width=4.7cm]{e_kin_si_hex.ps}
+\begin{minipage}{3cm}
+\begin{center}
+\underline{Vacancy}\\
+\includegraphics[width=2.8cm]{si_pd_albe/vac.eps}
+\end{center}
 \end{minipage}
-\begin{minipage}{4.7cm}
+\begin{minipage}{3cm}
 \begin{center}
-{\tiny nearly T $\rightarrow$ T}\\
+\underline{\hkl<1 1 0> DB}\\
+\includegraphics[width=2.8cm]{si_pd_albe/110_bonds.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}{3cm}
+\begin{center}
+\underline{\hkl<1 0 0> DB}\\
+\includegraphics[width=2.8cm]{si_pd_albe/100_bonds.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}{3cm}
+\begin{center}
+\underline{Tetrahedral}\\
+\includegraphics[width=2.8cm]{si_pd_albe/tet_bonds.eps}
 \end{center}
-\includegraphics[width=4.7cm]{nhex_tet.ps}
 \end{minipage}\\
 
 \underline{Hexagonal} \hspace{2pt}
@@ -1101,7 +1228,7 @@ Erhart/Albe & $9\times 9\times 9$ & $5832\pm 1$\\
 \framebox{
 \begin{minipage}{2.7cm}
 $E_{\text{f}}^*=4.48\text{ eV}$\\
-\includegraphics[width=2.7cm]{si_pd_albe/hex_a.eps}
+\includegraphics[width=2.7cm]{si_pd_albe/hex_a_bonds.eps}
 \end{minipage}
 \begin{minipage}{0.4cm}
 \begin{center}
@@ -1110,28 +1237,14 @@ $\Rightarrow$
 \end{minipage}
 \begin{minipage}{2.7cm}
 $E_{\text{f}}=3.96\text{ eV}$\\
-\includegraphics[width=2.8cm]{si_pd_albe/hex.eps}
+\includegraphics[width=2.8cm]{si_pd_albe/hex_bonds.eps}
 \end{minipage}
 }
-\begin{minipage}{2.9cm}
-\begin{flushright}
-\underline{Vacancy}\\
-\includegraphics[width=3.0cm]{si_pd_albe/vac.eps}
-\end{flushright}
-\end{minipage}
-
-\end{minipage}
-\begin{minipage}{3.5cm}
-
-\begin{flushright}
-\underline{\hkl<1 1 0> dumbbell}\\
-\includegraphics[width=3.0cm]{si_pd_albe/110.eps}\\
-\underline{Tetrahedral}\\
-\includegraphics[width=3.0cm]{si_pd_albe/tet.eps}\\
-\underline{\hkl<1 0 0> dumbbell}\\
-\includegraphics[width=3.0cm]{si_pd_albe/100.eps}
-\end{flushright}
-
+\begin{minipage}{5.5cm}
+\begin{center}
+{\tiny nearly T $\rightarrow$ T}\\
+\end{center}
+\includegraphics[width=6.0cm]{nhex_tet.ps}
 \end{minipage}
 
 \end{slide}
@@ -1140,71 +1253,73 @@ $E_{\text{f}}=3.96\text{ eV}$\\
 
 \footnotesize
 
- {\large\bf
-  C interstitial point defects in silicon\\[-0.1cm]
- }
+\headphd
+{\large\bf
+ C interstitial point defects in silicon\\
+}
 
 \begin{tabular}{l c c c c c c r}
 \hline
- $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
+ $E_{\text{f}}$ [eV] & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B &
+ {\color{black} \cs{} \& \si}\\
 \hline
VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
- Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
\textsc{vasp} & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
+ Erhart/Albe & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
 \hline
 \end{tabular}\\[0.1cm]
 
 \framebox{
-\begin{minipage}{2.7cm}
+\begin{minipage}{2.8cm}
 \underline{Hexagonal} \hspace{2pt}
 \href{../video/c_in_si_int_hexa.avi}{$\rhd$}\\
 $E_{\text{f}}^*=9.05\text{ eV}$\\
-\includegraphics[width=2.7cm]{c_pd_albe/hex.eps}
+\includegraphics[width=2.8cm]{c_pd_albe/hex_bonds.eps}
 \end{minipage}
 \begin{minipage}{0.4cm}
 \begin{center}
 $\Rightarrow$
 \end{center}
 \end{minipage}
-\begin{minipage}{2.7cm}
+\begin{minipage}{2.8cm}
 \underline{\hkl<1 0 0>}\\
 $E_{\text{f}}=3.88\text{ eV}$\\
-\includegraphics[width=2.7cm]{c_pd_albe/100.eps}
+\includegraphics[width=2.8cm]{c_pd_albe/100_bonds.eps}
 \end{minipage}
 }
-\begin{minipage}{2cm}
+\begin{minipage}{1.4cm}
 \hfill
 \end{minipage}
-\begin{minipage}{3cm}
+\begin{minipage}{3.0cm}
 \begin{flushright}
 \underline{Tetrahedral}\\
-\includegraphics[width=3.0cm]{c_pd_albe/tet.eps}
+\includegraphics[width=3.0cm]{c_pd_albe/tet_bonds.eps}
 \end{flushright}
 \end{minipage}
 
 \framebox{
-\begin{minipage}{2.7cm}
+\begin{minipage}{2.8cm}
 \underline{Bond-centered}\\
 $E_{\text{f}}^*=5.59\text{ eV}$\\
-\includegraphics[width=2.7cm]{c_pd_albe/bc.eps}
+\includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}
 \end{minipage}
 \begin{minipage}{0.4cm}
 \begin{center}
 $\Rightarrow$
 \end{center}
 \end{minipage}
-\begin{minipage}{2.7cm}
+\begin{minipage}{2.8cm}
 \underline{\hkl<1 1 0> dumbbell}\\
 $E_{\text{f}}=5.18\text{ eV}$\\
-\includegraphics[width=2.7cm]{c_pd_albe/110.eps}
+\includegraphics[width=2.8cm]{c_pd_albe/110_bonds.eps}
 \end{minipage}
 }
-\begin{minipage}{2cm}
+\begin{minipage}{1.4cm}
 \hfill
 \end{minipage}
-\begin{minipage}{3cm}
+\begin{minipage}{3.0cm}
 \begin{flushright}
 \underline{Substitutional}\\
-\includegraphics[width=3.0cm]{c_pd_albe/sub.eps}
+\includegraphics[width=3.0cm]{c_pd_albe/sub_bonds.eps}
 \end{flushright}
 \end{minipage}
 
@@ -1212,82 +1327,46 @@ $E_{\text{f}}=5.18\text{ eV}$\\
 
 \begin{slide}
 
+\headphd
+{\large\bf\boldmath
+ C-Si dimer \& bond-centered interstitial configuration
+}
+
 \footnotesize
 
- {\large\bf\boldmath
-  C \hkl<1 0 0> dumbbell interstitial configuration\\
- }
+\vspace{0.1cm}
 
-{\tiny
-\begin{tabular}{l c c c c c c c c}
-\hline
- Distances [nm] & $r(1C)$ & $r(2C)$ & $r(3C)$ & $r(12)$ & $r(13)$ & $r(34)$ & $r(23)$ & $r(25)$ \\
-\hline
-Erhart/Albe & 0.175 & 0.329 & 0.186 & 0.226 & 0.300 & 0.343 & 0.423 & 0.425 \\
-VASP & 0.174 & 0.341 & 0.182 & 0.229 & 0.286 & 0.347 & 0.422 & 0.417 \\
-\hline
-\end{tabular}\\[0.2cm]
-\begin{tabular}{l c c c c }
-\hline
- Angles [$^{\circ}$] & $\theta_1$ & $\theta_2$ & $\theta_3$ & $\theta_4$ \\
-\hline
-Erhart/Albe & 140.2 & 109.9 & 134.4 & 112.8 \\
-VASP & 130.7 & 114.4 & 146.0 & 107.0 \\
-\hline
-\end{tabular}\\[0.2cm]
-\begin{tabular}{l c c c}
-\hline
- Displacements [nm]& $a$ & $b$ & $|a|+|b|$ \\
-\hline
-Erhart/Albe & 0.084 & -0.091 & 0.175 \\
-VASP & 0.109 & -0.065 & 0.174 \\
-\hline
-\end{tabular}\\[0.6cm]
-}
-
-\begin{minipage}{3.0cm}
+\begin{minipage}[t]{4.1cm}
+{\bf\boldmath C \hkl<1 0 0> DB interstitial}\\[0.1cm]
+\begin{minipage}{2.0cm}
 \begin{center}
 \underline{Erhart/Albe}
-\includegraphics[width=3.0cm]{c_pd_albe/100_cmp.eps}
+\includegraphics[width=2.0cm]{c_pd_albe/100_cmp.eps}
 \end{center}
 \end{minipage}
-\begin{minipage}{3.0cm}
+\begin{minipage}{2.0cm}
 \begin{center}
-\underline{VASP}
-\includegraphics[width=3.0cm]{c_pd_vasp/100_cmp.eps}
+\underline{\textsc{vasp}}
+\includegraphics[width=2.0cm]{c_pd_vasp/100_cmp.eps}
+\end{center}
+\end{minipage}\\[0.2cm]
+Si-C-Si bond angle $\rightarrow$ \unit[180]{$^{\circ}$}\\
+$\Rightarrow$ $sp$ hybridization\\[0.1cm]
+Si-Si-Si bond angle $\rightarrow$ \unit[120]{$^{\circ}$}\\
+$\Rightarrow$ $sp^2$ hybridization
+\begin{center}
+\includegraphics[width=3.4cm]{c_pd_vasp/eden.eps}\\[-0.1cm]
+{\tiny Charge density isosurface}
 \end{center}
-\end{minipage}\\
-
-\begin{picture}(0,0)(-185,10)
-\includegraphics[width=6.8cm]{100-c-si-db_cmp.eps}
-\end{picture}
-\begin{picture}(0,0)(-280,-150)
-\includegraphics[width=3.3cm]{c_pd_vasp/eden.eps}
-\end{picture}
-
-\begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=green](5.18,5.92)(0.5,0.3)
-\psellipse[linecolor=red](3.45,5.92)(1.0,0.4)
-\psellipse[linecolor=blue](2.7,6.92)(0.9,0.2)
-\psellipse[linecolor=blue](4.65,6.92)(0.9,0.2)
-\end{pspicture}
-
-\end{slide}
-
-\begin{slide}
-
-\small
-
-\begin{minipage}{8.5cm}
-
- {\large\bf
-  Bond-centered interstitial configuration\\[-0.1cm]
- }
-
-\begin{minipage}{3.0cm}
-\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
 \end{minipage}
-\begin{minipage}{5.2cm}
+\begin{minipage}{0.2cm}
+\hfill
+\end{minipage}
+\begin{minipage}[t]{8.1cm}
+\begin{flushright}
+{\bf Bond-centered interstitial}\\[0.1cm]
+\begin{minipage}{4.4cm}
+%\scriptsize
 \begin{itemize}
  \item Linear Si-C-Si bond
  \item Si: one C \& 3 Si neighbours
@@ -1296,6 +1375,11 @@ VASP & 0.109 & -0.065 & 0.174 \\
        Real local minimum!
 \end{itemize}
 \end{minipage}
+\begin{minipage}{2.7cm}
+%\includegraphics[width=2.8cm]{c_pd_vasp/bc_2333.eps}\\
+\vspace{0.2cm}
+\includegraphics[width=2.8cm]{c_pd_albe/bc_bonds.eps}\\
+\end{minipage}
 
 \framebox{
  \tiny
@@ -1351,716 +1435,544 @@ VASP & 0.109 & -0.065 & 0.174 \\
   \end{flushright}
   \end{minipage}
  \end{minipage}
-}\\[0.1cm]
+}\\[0.4cm]
 
-\framebox{
-\begin{minipage}{4.5cm}
-\includegraphics[width=4cm]{c_100_mig_vasp/im_spin_diff.eps}
-\end{minipage}
-\begin{minipage}{3.5cm}
+%\framebox{
+\begin{minipage}{3.0cm}
+%\scriptsize
+\underline{Charge density}\\
 {\color{gray}$\bullet$} Spin up\\
 {\color{green}$\bullet$} Spin down\\
 {\color{blue}$\bullet$} Resulting spin up\\
 {\color{yellow}$\bullet$} Si atoms\\
 {\color{red}$\bullet$} C atom
 \end{minipage}
-}
-
+\begin{minipage}{3.6cm}
+\includegraphics[width=3.8cm]{c_100_mig_vasp/im_spin_diff.eps}
 \end{minipage}
-\begin{minipage}{4.2cm}
-\begin{flushright}
-\includegraphics[width=4.3cm]{c_pd_vasp/bc_2333_ksl.ps}\\
-{\color{green}$\Box$} {\tiny unoccupied}\\
-{\color{red}$\bullet$} {\tiny occupied}
+%}
+
 \end{flushright}
+
 \end{minipage}
+\begin{pspicture}(0,0)(0,0)
+\psline[linecolor=gray,linewidth=0.05cm](-7.8,-8.7)(-7.8,0)
+\end{pspicture}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf\boldmath
-  Migration of the C \hkl<1 0 0> dumbbell interstitial
- }
+\headphd
+{\large\bf\boldmath
+ C interstitial migration --- ab initio
+}
 
 \scriptsize
 
- {\small Investigated pathways}
+\vspace{0.1cm}
 
-\begin{minipage}{8.5cm}
-\begin{minipage}{8.3cm}
-\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
-\end{minipage}
-\begin{minipage}{0.4cm}
-$\rightarrow$
-\end{minipage}
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/bc_2333.eps}
+\begin{minipage}{6.8cm}
+\framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 0 1]}\\
+\begin{minipage}{2.0cm}
+\includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
 \end{minipage}
-\begin{minipage}{0.4cm}
-$\rightarrow$
-\end{minipage}
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/100_next_2333.eps}
-\end{minipage}
-\end{minipage}\\
-\begin{minipage}{8.3cm}
-\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
-\end{minipage}
-\begin{minipage}{0.4cm}
+\begin{minipage}{0.2cm}
 $\rightarrow$
 \end{minipage}
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/00-1-0-10_2333.eps}
+\begin{minipage}{2.0cm}
+\includegraphics[width=2.0cm]{c_pd_vasp/bc_2333.eps}
 \end{minipage}
-\begin{minipage}{0.4cm}
+\begin{minipage}{0.2cm}
 $\rightarrow$
 \end{minipage}
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/0-10_2333.eps}
-\end{minipage}
-\end{minipage}\\
-\begin{minipage}{8.3cm}
-\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/100_2333.eps}
+\begin{minipage}{2.0cm}
+\includegraphics[width=2.0cm]{c_pd_vasp/100_next_2333.eps}
+\end{minipage}\\[0.1cm]
+Spin polarization\\
+$\Rightarrow$ BC configuration constitutes local minimum\\
+$\Rightarrow$ Migration barrier to reach BC | $\Delta E=\unit[1.2]{eV}$
+\end{minipage}
+\begin{minipage}{5.4cm}
+\includegraphics[width=6.0cm]{im_00-1_nosym_sp_fullct_thesis_vasp_s.ps}
+\end{minipage}\\[0.2cm]
+%\hrule
+%
+\begin{minipage}{6.8cm}
+\framebox{\hkl[0 0 -1] $\rightarrow$ \hkl[0 -1 0]}\\
+\begin{minipage}{2.0cm}
+\includegraphics[width=2.0cm]{c_pd_vasp/100_2333.eps}
 \end{minipage}
-\begin{minipage}{0.4cm}
+\begin{minipage}{0.2cm}
 $\rightarrow$
 \end{minipage}
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
+\begin{minipage}{2.0cm}
+\includegraphics[width=2.0cm]{c_pd_vasp/00-1-0-10_2333.eps}
 \end{minipage}
-\begin{minipage}{0.4cm}
+\begin{minipage}{0.2cm}
 $\rightarrow$
 \end{minipage}
-\begin{minipage}{2.4cm}
-\includegraphics[width=2.4cm]{c_pd_vasp/0-10_ip_2333.eps}
-\end{minipage}
-\end{minipage}
+\begin{minipage}{2.0cm}
+\includegraphics[width=2.0cm]{c_pd_vasp/0-10_2333.eps}
+\end{minipage}\\[0.1cm]
+$\Delta E=\unit[0.9]{eV}$ | Experimental values: \unit[0.70--0.87]{eV}\\
+$\Rightarrow$ {\color{red}Migration mechanism identified!}\\
+Note: Change in orientation
 \end{minipage}
-\framebox{
-\begin{minipage}{4.2cm}
- {\small Constrained relaxation\\
-         technique (CRT) method}\\
-\includegraphics[width=4cm]{crt_orig.eps}
-\begin{itemize}
- \item Constrain diffusing atom
- \item Static constraints 
-\end{itemize}
-\vspace*{0.3cm}
- {\small Modifications}\\
-\includegraphics[width=4cm]{crt_mod.eps}
-\begin{itemize}
- \item Constrain all atoms
- \item Update individual\\
-       constraints
-\end{itemize}
-\end{minipage}
-}
-
-\end{slide}
-
-\begin{slide}
-
- {\large\bf\boldmath
-  Migration of the C \hkl<1 0 0> dumbbell interstitial
- }
-
-\scriptsize
-
-\framebox{
-\begin{minipage}{5.9cm}
-\begin{flushleft}
-\includegraphics[width=5.8cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.45cm]
-\end{flushleft}
-\begin{center}
-\begin{picture}(0,0)(60,0)
-\includegraphics[width=1cm]{vasp_mig/00-1.eps}
-\end{picture}
-\begin{picture}(0,0)(-5,0)
-\includegraphics[width=1cm]{vasp_mig/bc_00-1_sp.eps}
-\end{picture}
-\begin{picture}(0,0)(-55,0)
-\includegraphics[width=1cm]{vasp_mig/bc.eps}
-\end{picture}
-\begin{picture}(0,0)(12.5,10)
-\includegraphics[width=1cm]{110_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(90,0)
-\includegraphics[height=0.9cm]{001_arrow.eps}
-\end{picture}
-\end{center}
-\vspace*{0.35cm}
-\end{minipage}
-}
-\begin{minipage}{0.3cm}
-\hfill
-\end{minipage}
-\framebox{
-\begin{minipage}{5.9cm}
-\begin{flushright}
-\includegraphics[width=5.9cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[0.5cm]
-\end{flushright}
-\begin{center}
-\begin{picture}(0,0)(60,0)
-\includegraphics[width=1cm]{vasp_mig/00-1_a.eps}
-\end{picture}
-\begin{picture}(0,0)(5,0)
-\includegraphics[width=1cm]{vasp_mig/00-1_0-10_sp.eps}
-\end{picture}
-\begin{picture}(0,0)(-55,0)
-\includegraphics[width=1cm]{vasp_mig/0-10.eps}
-\end{picture}
-\begin{picture}(0,0)(12.5,10)
-\includegraphics[width=1cm]{100_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(90,0)
-\includegraphics[height=0.9cm]{001_arrow.eps}
-\end{picture}
-\end{center}
-\vspace*{0.3cm}
-\end{minipage}\\
-}
-
-\vspace*{0.05cm}
-
-\framebox{
-\begin{minipage}{5.9cm}
-\begin{flushleft}
-\includegraphics[width=5.9cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[0.6cm]
-\end{flushleft}
+\begin{minipage}{5.4cm}
+\includegraphics[width=6.0cm]{00-1_0-10_vasp_s.ps}
+\end{minipage}\\[0.1cm]
+%
 \begin{center}
-\begin{picture}(0,0)(60,0)
-\includegraphics[width=0.9cm]{vasp_mig/00-1_b.eps}
-\end{picture}
-\begin{picture}(0,0)(10,0)
-\includegraphics[width=0.9cm]{vasp_mig/00-1_ip0-10_sp.eps}
-\end{picture}
-\begin{picture}(0,0)(-60,0)
-\includegraphics[width=0.9cm]{vasp_mig/0-10_b.eps}
-\end{picture}
-\begin{picture}(0,0)(12.5,10)
-\includegraphics[width=1cm]{100_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(90,0)
-\includegraphics[height=0.9cm]{001_arrow.eps}
-\end{picture}
+Reorientation pathway composed of two consecutive processes of the above type
 \end{center}
-\vspace*{0.3cm}
-\end{minipage}
-}
-\begin{minipage}{0.3cm}
-\hfill
-\end{minipage}
-\begin{minipage}{6.5cm}
-VASP results
-\begin{itemize}
- \item Energetically most favorable path
-       \begin{itemize}
-        \item Path 2
-        \item Activation energy: $\approx$ 0.9 eV 
-        \item Experimental values: 0.73 ... 0.87 eV
-       \end{itemize}
-       $\Rightarrow$ {\color{blue}Diffusion} path identified!
- \item Reorientation (path 3)
-       \begin{itemize}
-        \item More likely composed of two consecutive steps of type 2
-        \item Experimental values: 0.77 ... 0.88 eV
-       \end{itemize}
-       $\Rightarrow$ {\color{blue}Reorientation} transition identified!
-\end{itemize}
-\end{minipage}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf\boldmath
-  Migration of the C \hkl<1 0 0> dumbbell interstitial
- }
+\headphd
+{\large\bf\boldmath
+ C interstitial migration --- analytical potential
+}
 
 \scriptsize
 
- \vspace{0.1cm}
-
-\begin{minipage}{6.5cm}
-
-\framebox{
-\begin{minipage}[t]{5.9cm}
-\begin{flushleft}
-\includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
-\end{flushleft}
-\begin{center}
-\begin{pspicture}(0,0)(0,0)
-\psframe[linecolor=red,fillstyle=none](-2.8,1.35)(3.3,2.7)
-\end{pspicture}
-\begin{picture}(0,0)(60,-50)
-\includegraphics[width=1cm]{albe_mig/bc_00-1_red_00.eps}
-\end{picture}
-\begin{picture}(0,0)(5,-50)
-\includegraphics[width=1cm]{albe_mig/bc_00-1_red_01.eps}
-\end{picture}
-\begin{picture}(0,0)(-55,-50)
-\includegraphics[width=1cm]{albe_mig/bc_00-1_red_02.eps}
-\end{picture}
-\begin{picture}(0,0)(12.5,-40)
-\includegraphics[width=1cm]{110_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(90,-45)
-\includegraphics[height=0.9cm]{001_arrow.eps}
-\end{picture}\\
-\begin{pspicture}(0,0)(0,0)
-\psframe[linecolor=blue,fillstyle=none](-2.8,0)(3.3,1.6)
-\end{pspicture}
-\begin{picture}(0,0)(60,-15)
-\includegraphics[width=0.9cm]{albe_mig/bc_00-1_01.eps}
-\end{picture}
-\begin{picture}(0,0)(35,-15)
-\includegraphics[width=0.9cm]{albe_mig/bc_00-1_02.eps}
-\end{picture}
-\begin{picture}(0,0)(-5,-15)
-\includegraphics[width=0.9cm]{albe_mig/bc_00-1_03.eps}
-\end{picture}
-\begin{picture}(0,0)(-55,-15)
-\includegraphics[width=0.9cm]{albe_mig/bc_00-1_04.eps}
-\end{picture}
-\begin{picture}(0,0)(12.5,-5)
-\includegraphics[width=1cm]{100_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(90,-15)
-\includegraphics[height=0.9cm]{010_arrow.eps}
-\end{picture}
-\end{center}
-\end{minipage}
-}\\[0.1cm]
+\vspace{0.3cm}
 
-\begin{minipage}{5.9cm}
-Erhart/Albe results
+\begin{minipage}[t]{6.0cm}
+{\bf\boldmath BC to \hkl[0 0 -1] transition}\\[0.2cm]
+\includegraphics[width=6.0cm]{bc_00-1_albe_s.ps}\\
 \begin{itemize}
- \item Lowest activation energy: $\approx$ 2.2 eV
- \item 2.4 times higher than VASP
+ \item Lowermost migration barrier
+ \item $\Delta E \approx \unit[2.2]{eV}$
+ \item 2.4 times higher than ab initio result
  \item Different pathway
 \end{itemize}
 \end{minipage}
-
-\end{minipage}
-\begin{minipage}{6.5cm}
-
-\framebox{
-\begin{minipage}{5.9cm}
-%\begin{flushright}
-%\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
-%\end{flushright}
-%\begin{center}
-%\begin{pspicture}(0,0)(0,0)
-%\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
-%\end{pspicture}
-%\begin{picture}(0,0)(60,-5)
-%\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
-%\end{picture}
-%\begin{picture}(0,0)(0,-5)
-%\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
-%\end{picture}
-%\begin{picture}(0,0)(-55,-5)
-%\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
-%\end{picture}
-%\begin{picture}(0,0)(12.5,5)
-%\includegraphics[width=1cm]{100_arrow.eps}
-%\end{picture}
-%\begin{picture}(0,0)(90,0)
-%\includegraphics[height=0.9cm]{001_arrow.eps}
-%\end{picture}
-%\end{center}
-%\vspace{0.2cm}
-%\end{minipage}
-%}\\[0.2cm]
-%
-%\framebox{
-%\begin{minipage}{5.9cm}
-\includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
+\begin{minipage}[t]{0.2cm}
+\hfill
 \end{minipage}
-}\\[0.1cm]
-
-\begin{minipage}{5.9cm}
-Transition involving \ci{} \hkl<1 1 0>
+\begin{minipage}[t]{6.0cm}
+{\bf\boldmath Transition involving a \hkl<1 1 0> configuration}
+\vspace{0.1cm}
 \begin{itemize}
  \item Bond-centered configuration unstable\\
        $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
- \item Transition minima of path 2 \& 3\\
-       $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
- \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
- \item 2.4 - 3.4 times higher than VASP
- \item Rotation of dumbbell orientation
+ \item Minima of the \hkl[0 0 -1] to \hkl[0 -1 0] transition\\
+       $\rightarrow$ \ci{} \hkl<1 1 0> DB
 \end{itemize}
 \vspace{0.1cm}
+\includegraphics[width=6.0cm]{00-1_110_0-10_mig_albe.ps}
+\begin{itemize}
+ \item $\Delta E \approx \unit[2.2]{eV} \text{ \& } \unit[0.9]{eV}$
+ \item 2.4 -- 3.4 times higher than ab initio result
+ \item After all: Change of the DB orientation
+\end{itemize}
+\end{minipage}
+
+\vspace{0.5cm}
 \begin{center}
-{\color{blue}Overestimated diffusion barrier}
+{\color{red}\bf Drastically overestimated diffusion barrier}
 \end{center}
-\end{minipage}
 
-\end{minipage}
+\begin{pspicture}(0,0)(0,0)
+\psline[linewidth=0.05cm,linecolor=gray](6.1,1.0)(6.1,9.3)
+\end{pspicture}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf\boldmath
-  Combinations with a C-Si \hkl<1 0 0>-type interstitial
- }
-
-\small
-
-\vspace*{0.1cm}
+\headphd
+{\large\bf\boldmath
+ Defect combinations
+}
 
-Binding energy: 
-$
-E_{\text{b}}=
-E_{\text{f}}^{\text{defect combination}}-
-E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
-E_{\text{f}}^{\text{2nd defect}}
-$
+\footnotesize
 
-\vspace*{0.1cm}
+\vspace{0.3cm}
 
+\begin{minipage}{9cm}
+{\bf
+ Summary of combinations}\\[0.1cm]
 {\scriptsize
 \begin{tabular}{l c c c c c c}
 \hline
  $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
  \hline
- \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
- \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
- \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
- \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
- \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
- \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
+ \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
+ \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
+ \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
+ \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
+ \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
+ \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
  \hline
- C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
- Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
+ C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
+ Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
 \hline
 \end{tabular}
 }
+\vspace{0.2cm}
+\begin{center}
+{\color{blue}
+ $E_{\text{b}}$ explainable by stress compensation / increase
+}
+\end{center}
+\end{minipage}
+\begin{minipage}{3cm}
+\includegraphics[width=3.5cm]{comb_pos.eps}
+\end{minipage}
 
-\vspace*{0.3cm}
-
-\footnotesize
+\vspace{0.2cm}
 
-\begin{minipage}[t]{3.8cm}
-\underline{\hkl<1 0 0> at position 1}\\[0.1cm]
-\includegraphics[width=3.5cm]{00-1dc/2-25.eps}
+{\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
+\begin{minipage}[t]{3.2cm}
+\underline{\hkl[1 0 0] at position 1}\\[0.1cm]
+\includegraphics[width=2.8cm]{00-1dc/2-25.eps}
 \end{minipage}
-\begin{minipage}[t]{3.5cm}
-\underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
-\includegraphics[width=3.2cm]{00-1dc/2-39.eps}
+\begin{minipage}[t]{3.0cm}
+\underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
+\includegraphics[width=2.8cm]{00-1dc/2-39.eps}
 \end{minipage}
-\begin{minipage}[t]{5.5cm}
+\begin{minipage}[t]{6.1cm}
+\vspace{0.7cm}
 \begin{itemize}
- \item $E_{\text{b}}=0$ $\Leftrightarrow$ non-interacting defects\\
-       $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
- \item Stress compensation / increase
- \item Unfavored: antiparallel orientations
- \item Indication of energetically favored\\
-       agglomeration
- \item Most favorable: C clustering
- \item However: High barrier ($>4\,\text{eV}$)
- \item $4\times{\color{cyan}-2.25}$ versus $2\times{\color{orange}-2.39}$
-       (Entropy)
+ \item \ci{} agglomeration energetically favorable
+ \item Most favorable: C clustering\\
+       {\color{red}However \ldots}\\
+        \ldots high migration barrier ($>4\,\text{eV}$)\\
+        \ldots entropy:
+        $4\times{\color{cyan}[-2.25]}$ versus
+        $2\times{\color{orange}[-2.39]}$
 \end{itemize}
+\begin{center}
+{\color{blue}\ci{} agglomeration / no C clustering}
+\end{center}
 \end{minipage}
 
-\begin{picture}(0,0)(-295,-130)
-\includegraphics[width=3.5cm]{comb_pos.eps}
-\end{picture}
-
 \end{slide}
 
 \begin{slide}
 
- {\large\bf\boldmath
-  Combinations of C-Si \hkl<1 0 0>-type interstitials
- }
-
-\small
-
-\vspace*{0.1cm}
+\headphd
+{\large\bf\boldmath
+ Defect combinations
+}
 
-Energetically most favorable combinations along \hkl<1 1 0>
+\footnotesize
 
-\vspace*{0.1cm}
+\vspace{0.3cm}
 
+\begin{minipage}{9cm}
+{\bf
+ Summary of combinations}\\[0.1cm]
 {\scriptsize
 \begin{tabular}{l c c c c c c}
 \hline
- & 1 & 2 & 3 & 4 & 5 & 6\\
-\hline
-$E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
-C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
-Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
+ $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
+ \hline
+ \hkl[0 0 -1] & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
+ \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
+ \hkl[0 -1 0] & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
+ \hkl[0 1 0] & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
+ \hkl[-1 0 0] & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
+ \hkl[1 0 0] & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
+ \hline
+ C$_{\text{sub}}$ & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
+ Vacancy & -5.39 ($\rightarrow$ C$_{\text{sub}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
 \hline
 \end{tabular}
 }
+\vspace{0.2cm}
+\begin{center}
+{\color{blue}
+ $E_{\text{b}}$ explainable by stress compensation / increase
+}
+\end{center}
+\end{minipage}
+\begin{minipage}{3cm}
+\includegraphics[width=3.5cm]{comb_pos.eps}
+\end{minipage}
 
-\vspace*{0.3cm}
+\vspace{0.2cm}
 
-\begin{minipage}{7.0cm}
-\includegraphics[width=7cm]{db_along_110_cc.ps}
+{\bf\boldmath Combinations of \hkl<1 0 0>-type interstitials}\\[0.2cm]
+\begin{minipage}[t]{3.2cm}
+\underline{\hkl[1 0 0] at position 1}\\[0.1cm]
+\includegraphics[width=2.8cm]{00-1dc/2-25.eps}
 \end{minipage}
-\begin{minipage}{6.0cm}
+\begin{minipage}[t]{3.0cm}
+\underline{\hkl[0 -1 0] at position 1}\\[0.1cm]
+\includegraphics[width=2.8cm]{00-1dc/2-39.eps}
+\end{minipage}
+\begin{minipage}[t]{6.1cm}
+\vspace{0.7cm}
 \begin{itemize}
- \item Interaction proportional to reciprocal cube of C-C distance
- \item Saturation in the immediate vicinity
- \renewcommand\labelitemi{$\Rightarrow$}
- \item Agglomeration of \ci{} expected
- \item Absence of C clustering
+ \item \ci{} agglomeration energetically favorable
+ \item Most favorable: C clustering\\
+       {\color{red}However \ldots}\\
+        \ldots high migration barrier ($>4\,\text{eV}$)\\
+        \ldots entropy:
+        $4\times{\color{cyan}[-2.25]}$ versus
+        $2\times{\color{orange}[-2.39]}$
 \end{itemize}
 \begin{center}
-{\color{blue}
- Consisten with initial precipitation model
-}
+{\color{blue}\ci{} agglomeration / no C clustering}
 \end{center}
 \end{minipage}
 
+% insert graph ...
+\begin{pspicture}(0,0)(0,0)
+\rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
+\begin{minipage}{14cm}
+\hfill
+\vspace{12cm}
+\end{minipage}
+}}
+\rput(6.5,5.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
+\begin{minipage}{8cm}
+\begin{center}
 \vspace{0.2cm}
+\scriptsize
+Interaction along \hkl[1 1 0]
+\includegraphics[width=7cm]{db_along_110_cc.ps}
+\end{center}
+\end{minipage}
+}}}
+\end{pspicture}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf\boldmath
-  Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
- }
-
- \scriptsize
+\headphd
+{\large\bf
+ Defect combinations of C-Si dimers and vacancies
+}
+\footnotesize
 
-%\begin{center}
-%\begin{minipage}{3.2cm}
-%\includegraphics[width=3cm]{sub_110_combo.eps}
-%\end{minipage}
-%\begin{minipage}{7.8cm}
-%\begin{tabular}{l c c c c c c}
-%\hline
-%C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
-%                   \hkl<1 0 1> & \hkl<-1 0 1> \\
-%\hline
-%1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
-%2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
-%3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
-%4 & \RM{4} & B & D & E & E & D \\
-%5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
-%\hline
-%\end{tabular}
-%\end{minipage}
-%\end{center}
-
-%\begin{center}
-%\begin{tabular}{l c c c c c c c c c c}
-%\hline
-%Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
-%\hline
-%$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
-%$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
-%$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
-%\hline
-%\end{tabular}
-%\end{center}
+\vspace{0.2cm}
 
-\begin{minipage}{6.0cm}
-\includegraphics[width=5.8cm]{c_sub_si110.ps}
+\begin{minipage}[b]{2.6cm}
+\begin{flushleft}
+\underline{V at 2: $E_{\text{b}}=-0.59\text{ eV}$}\\[0.1cm]
+\includegraphics[width=2.5cm]{00-1dc/0-59.eps}
+\end{flushleft}
 \end{minipage}
-\begin{minipage}{7cm}
-\scriptsize
-\begin{itemize}
- \item IBS: C may displace Si\\
-       $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
- \item Assumption:\\
-       \hkl<1 1 0>-type $\rightarrow$ favored combination
- \renewcommand\labelitemi{$\Rightarrow$}
- \item Most favorable: \cs{} along \hkl<1 1 0> chain \si{}
- \item Less favorable than C-Si \hkl<1 0 0> dumbbell
- \item Interaction drops quickly to zero\\
-       $\rightarrow$ low capture radius
-\end{itemize}
-\begin{center}
- {\color{blue}
- IBS process far from equilibrium\\
- \cs{} \& \si{} instead of thermodynamic ground state
- }
-\end{center}
+\begin{minipage}[b]{7cm}
+\hfill
 \end{minipage}
+\begin{minipage}[b]{2.6cm}
+\begin{flushright}
+\underline{V at 3, $E_{\text{b}}=-3.14\text{ eV}$}\\[0.1cm]
+\includegraphics[width=2.5cm]{00-1dc/3-14.eps}
+\end{flushright}
+\end{minipage}\\[0.2cm]
 
 \begin{minipage}{6.5cm}
-\includegraphics[width=6.0cm]{162-097.ps}
-\begin{itemize}
- \item Low migration barrier
-\end{itemize}
+\includegraphics[width=6.0cm]{059-539.ps}
 \end{minipage}
+\begin{minipage}{5.7cm}
+\includegraphics[width=6.0cm]{314-539.ps}
+\end{minipage}
+
+\begin{pspicture}(0,0)(0,0)
+\psline[linewidth=0.05cm,linecolor=gray](6.3,9.0)(6.3,0)
+
+\rput(6.3,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=gray]{
 \begin{minipage}{6.5cm}
 \begin{center}
-Ab initio MD at \degc{900}\\
-\includegraphics[width=3.3cm]{md_vasp_01.eps}
-$t=\unit[2230]{fs}$\\
-\includegraphics[width=3.3cm]{md_vasp_02.eps}
-$t=\unit[2900]{fs}$
-\end{center}
+IBS: Impinging C creates V \& far away \si\\[0.3cm]
+Low migration barrier towards C$_{\text{sub}}$\\
+\&\\
+High barrier for reverse process\\[0.3cm]
 {\color{blue}
-Contribution of entropy to structural formation
+High probability of stable C$_{\text{sub}}$ configuration
 }
+\end{center}
 \end{minipage}
+}}}
+\end{pspicture}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf\boldmath
-  Migration in C-Si \hkl<1 0 0> and vacancy combinations
- }
+\headphd
+{\large\bf
+ Combinations of substitutional C and Si self-interstitials
+}
 
- \footnotesize
+\scriptsize
 
-\vspace{0.1cm}
+\vspace{0.3cm}
 
-\begin{minipage}[t]{3cm}
-\underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
-\includegraphics[width=2.8cm]{00-1dc/0-59.eps}
-\end{minipage}
-\begin{minipage}[t]{7cm}
-\vspace{0.2cm}
+\begin{minipage}{6.2cm}
 \begin{center}
- Low activation energies\\
- High activation energies for reverse processes\\
- $\Downarrow$\\
- {\color{blue}C$_{\text{sub}}$ very stable}\\
-\vspace*{0.1cm}
- \hrule
-\vspace*{0.1cm}
- Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
- $\Downarrow$\\
- {\color{blue}Formation of SiC by successive substitution by C}
-
+{\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
+\begin{itemize}
+ \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
+ \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
+ \item Interaction drops quickly to zero\\
+       $\rightarrow$ low capture radius
+\end{itemize}
 \end{center}
 \end{minipage}
-\begin{minipage}[t]{3cm}
-\underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
-\includegraphics[width=2.8cm]{00-1dc/3-14.eps}
+\begin{minipage}{0.2cm}
+\hfill
 \end{minipage}
-
-
-\framebox{
-\begin{minipage}{5.9cm}
-\includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
+\begin{minipage}{6.0cm}
 \begin{center}
-\begin{picture}(0,0)(70,0)
-\includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
-\end{picture}
-\begin{picture}(0,0)(30,0)
-\includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
-\end{picture}
-\begin{picture}(0,0)(-10,0)
-\includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
-\end{picture}
-\begin{picture}(0,0)(-48,0)
-\includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
-\end{picture}
-\begin{picture}(0,0)(12.5,5)
-\includegraphics[width=1cm]{100_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(97,-10)
-\includegraphics[height=0.9cm]{001_arrow.eps}
-\end{picture}
+{\bf Transition from the ground state}
+\begin{itemize}
+ \item Low transition barrier
+ \item Barrier smaller than \ci{} migration barrier
+ \item Low \si{} migration barrier (\unit[0.67]{eV})\\
+       $\rightarrow$ Separation of \cs{} \& \si{} most probable
+\end{itemize}
 \end{center}
-\vspace{0.1cm}
+\end{minipage}\\[0.3cm]
+
+\begin{minipage}{6.0cm}
+\includegraphics[width=6.0cm]{c_sub_si110.ps}
 \end{minipage}
-}
-\begin{minipage}{0.3cm}
+\begin{minipage}{0.4cm}
 \hfill
 \end{minipage}
-\framebox{
-\begin{minipage}{5.9cm}
-\includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
-\begin{center}
-\begin{picture}(0,0)(60,0)
-\includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
-\end{picture}
-\begin{picture}(0,0)(25,0)
-\includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
-\end{picture}
-\begin{picture}(0,0)(-20,0)
-\includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
-\end{picture}
-\begin{picture}(0,0)(-55,0)
-\includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
-\end{picture}
-\begin{picture}(0,0)(12.5,5)
-\includegraphics[width=1cm]{100_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(95,0)
-\includegraphics[height=0.9cm]{001_arrow.eps}
-\end{picture}
-\end{center}
-\vspace{0.1cm}
+\begin{minipage}{6.0cm}
+\begin{flushright}
+\includegraphics[width=6.0cm]{162-097.ps}
+\end{flushright}
 \end{minipage}
+
+\begin{pspicture}(0,0)(0,0)
+\psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
+\rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
+\begin{minipage}{8cm}
+\begin{center}
+\vspace{0.1cm}
+{\color{black}
+\cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
+IBS --- process far from equilibrium\\
 }
+\end{center}
+\end{minipage}
+}}}
+\end{pspicture}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf
-  Conclusion of defect / migration / combined defect simulations
- }
+\headphd
+{\large\bf
+ Combinations of substitutional C and Si self-interstitials
+}
 
- \footnotesize
+\scriptsize
 
-\vspace*{0.1cm}
+\vspace{0.3cm}
 
-Defect structures
+\begin{minipage}{6.2cm}
+\begin{center}
+{\bf\boldmath C$_{\text{sub}}$ - \si{} \hkl<1 1 0> interaction}
 \begin{itemize}
- \item Accurately described by quantum-mechanical simulations
- \item Less accurate description by classical potential simulations
- \item Underestimated formation energy of \cs{} by classical approach
- \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
+ \item Most favorable: \cs{} along \hkl<1 1 0> chain of \si{}
+ \item Less favorable than ground-state \ci{} \hkl<1 0 0> DB
+ \item Interaction drops quickly to zero\\
+       $\rightarrow$ low capture radius
 \end{itemize}
-
-Migration
-\begin{itemize}
- \item C migration pathway in Si identified
- \item Consistent with reorientation and diffusion experiments
-\end{itemize} 
+\end{center}
+\end{minipage}
+\begin{minipage}{0.2cm}
+\hfill
+\end{minipage}
+\begin{minipage}{6.0cm}
+\begin{center}
+{\bf Transition from the ground state}
 \begin{itemize}
- \item Different path and ...
- \item overestimated barrier by classical potential calculations
-\end{itemize} 
+ \item Low transition barrier
+ \item Barrier smaller than \ci{} migration barrier
+ \item Low \si{} migration barrier (\unit[0.67]{eV})\\
+       $\rightarrow$ Separation of \cs{} \& \si{} most probable
+\end{itemize}
+\end{center}
+\end{minipage}\\[0.3cm]
 
-Concerning the precipitation mechanism
-\begin{itemize}
- \item Agglomeration of C-Si dumbbells energetically favorable
-       (stress compensation)
- \item C-Si indeed favored compared to
-       C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
- \item Possible low interaction capture radius of
-       C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
- \item Low barrier for
-       \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
- \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
-       C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
-\end{itemize} 
+\begin{minipage}{6.0cm}
+\includegraphics[width=6.0cm]{c_sub_si110.ps}
+\end{minipage}
+\begin{minipage}{0.4cm}
+\hfill
+\end{minipage}
+\begin{minipage}{6.0cm}
+\begin{flushright}
+\includegraphics[width=6.0cm]{162-097.ps}
+\end{flushright}
+\end{minipage}
+
+\begin{pspicture}(0,0)(0,0)
+\psline[linewidth=0.05cm,linecolor=gray](6.5,0)(6.5,7.5)
+\rput(6.5,-0.7){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.05cm,linecolor=blue]{
+\begin{minipage}{8cm}
+\begin{center}
+\vspace{0.1cm}
+{\color{black}
+\cs{} \& \si{} instead of thermodynamic ground state\\[0.1cm]
+IBS --- process far from equilibrium\\
+}
+\end{center}
+\end{minipage}
+}}}
+\end{pspicture}
+
+% md support
+\begin{pspicture}(0,0)(0,0)
+\rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
+\begin{minipage}{14cm}
+\hfill
+\vspace{14cm}
+\end{minipage}
+}}
+\rput(6.5,4.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
+\begin{minipage}{11cm}
 \begin{center}
-{\color{blue}Results suggest increased participation of \cs}
+\vspace{0.2cm}
+\scriptsize
+Ab initio MD at \degc{900}\\[0.4cm]
+\begin{minipage}{5.4cm}
+\centering
+\includegraphics[width=4.3cm]{md01_bonds.eps}\\
+$t=\unit[2230]{fs}$
+\end{minipage}
+\begin{minipage}{5.4cm}
+\centering
+\includegraphics[width=4.3cm]{md02_bonds.eps}\\
+$t=\unit[2900]{fs}$
+\end{minipage}\\[0.5cm]
+{\color{blue}
+Contribution of entropy to structural formation\\[0.1cm]
+}
 \end{center}
+\end{minipage}
+}}}
+\end{pspicture}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf
-  Silicon carbide precipitation simulations
- }
+\headphd
+{\large\bf
+ Silicon carbide precipitation simulations
+}
 
- \small
+\small
+
+\vspace{0.2cm}
+
+{\bf Procedure}
 
 {\scriptsize
  \begin{pspicture}(0,0)(12,6.5)
@@ -2079,7 +1991,7 @@ Concerning the precipitation mechanism
    Insertion of C atoms at constant T
    \begin{itemize}
     \item total simulation volume {\pnode{in1}}
-    \item volume of minimal SiC precipitate {\pnode{in2}}
+    \item volume of minimal SiC precipitate size {\pnode{in2}}
     \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
           precipitate
    \end{itemize} 
@@ -2090,227 +2002,279 @@ Concerning the precipitation mechanism
   }}}}
   \ncline[]{->}{init}{insert}
   \ncline[]{->}{insert}{cool}
-  \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
-  \rput(7.8,6){\footnotesize $V_1$}
-  \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
-  \rput(9.2,4.85){\tiny $V_2$}
-  \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
-  \rput(9.55,4.45){\footnotesize $V_3$}
+  \psframe[fillstyle=solid,fillcolor=white](7.3,0.7)(12.8,6.3)
+  \rput(7.6,6){\footnotesize $V_1$}
+  \psframe[fillstyle=solid,fillcolor=lightgray](8.7,2)(11.6,5)
+  \rput(8.9,4.85){\tiny $V_2$}
+  \psframe[fillstyle=solid,fillcolor=gray](8.95,2.25)(11.35,4.75)
+  \rput(9.25,4.45){\footnotesize $V_3$}
   \rput(7.9,3.2){\pnode{ins1}}
-  \rput(9.22,2.8){\pnode{ins2}}
-  \rput(11.0,2.4){\pnode{ins3}}
+  \rput(8.92,2.8){\pnode{ins2}}
+  \rput(10.8,2.4){\pnode{ins3}}
   \ncline[]{->}{in1}{ins1}
   \ncline[]{->}{in2}{ins2}
   \ncline[]{->}{in3}{ins3}
  \end{pspicture}
 }
 
+\vspace{-0.5cm}
+
+{\bf Note}
+
+\footnotesize
+
+\begin{minipage}{5.7cm}
 \begin{itemize}
- \item Restricted to classical potential simulations
- \item $V_2$ and $V_3$ considered due to low diffusion
- \item Amount of C atoms: 6000
-       ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
- \item Simulation volume: $31\times 31\times 31$ unit cells
+ \item Amount of C atoms: 6000\\
+       ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: \unit[2--4]{nm})
+ \item Simulation volume: $31^3$ Si unit cells\\
        (238328 Si atoms)
 \end{itemize}
+\end{minipage}
+\begin{minipage}{0.3cm}
+\hfill
+\end{minipage}
+\framebox{
+\begin{minipage}{6.0cm}
+Restricted to classical potential caclulations\\
+$\rightarrow$ Low C diffusion / overestimated barrier\\
+$\rightarrow$ Consider $V_2$ and $V_3$
+%\begin{itemize}
+% \item $V_2$ and $V_3$ considered due to expected low C diffusion
+%\end{itemize}
+\end{minipage}
+}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf\boldmath
-  Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
- }
-
- \small
+\headphd
+{\large\bf\boldmath
+ Silicon carbide precipitation simulations at \degc{450} as in IBS
+}
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
-\end{minipage} 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
-\end{minipage} 
+\small
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
+\begin{minipage}{6.3cm}
+\hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
+\hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
+\hfill
 \end{minipage} 
-\begin{minipage}{6.5cm}
+\begin{minipage}{6.1cm}
 \scriptsize
-\underline{Low C concentration ($V_1$)}\\
+\underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
 \hkl<1 0 0> C-Si dumbbell dominated structure
 \begin{itemize}
- \item Si-C bumbs around 0.19 nm
- \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
-       concatenated dumbbells of various orientation
- \item Si-Si NN distance stretched to 0.3 nm
+ \item Si-C bumbs around \unit[0.19]{nm}
+ \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
+       concatenated differently oriented \ci{} DBs
+ \item Si-Si NN distance stretched to \unit[0.3]{nm}
+\end{itemize}
+\begin{pspicture}(0,0)(6.0,1.0)
+\rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
+\begin{minipage}{6cm}
+\centering
+Formation of \ci{} dumbbells\\
+C atoms in proper 3C-SiC distance first
+\end{minipage}
+}}
+\end{pspicture}\\[0.1cm]
+\underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
+\begin{itemize}
+\item High amount of strongly bound C-C bonds
+\item Increased defect \& damage density\\
+      $\rightarrow$ Arrangements hard to categorize and trace
+\item Only short range order observable
 \end{itemize}
-{\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
-\underline{High C concentration ($V_2$, $V_3$)}\\
-High amount of strongly bound C-C bonds\\
-Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
-Only short range order observable\\
-{\color{blue}$\Rightarrow$ amorphous SiC-like phase}
+\begin{pspicture}(0,0)(6.0,0.8)
+\rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
+\begin{minipage}{6cm}
+\centering
+Amorphous SiC-like phase
+\end{minipage}
+}}
+\end{pspicture}\\[0.3cm]
+\begin{pspicture}(0,0)(6.0,2.0)
+\rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=white]{
+\begin{minipage}{6cm}
+\hfill
+\vspace{2.5cm}
+\end{minipage}
+}}
+\end{pspicture}
 \end{minipage} 
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf\boldmath
-  Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
- }
-
- \small
+\headphd
+{\large\bf\boldmath
+ Silicon carbide precipitation simulations at \degc{450} as in IBS
+}
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
-\end{minipage} 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
-\end{minipage} 
+\small
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
+\begin{minipage}{6.3cm}
+\hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-c.ps}\\
+\hspace*{-0.4cm}\includegraphics[width=6.5cm]{sic_prec_450_si-si_c-c.ps}
+\hfill
 \end{minipage} 
-\begin{minipage}{6.5cm}
+\begin{minipage}{6.1cm}
 \scriptsize
-\underline{Low C concentration ($V_1$)}\\
+\underline{Low C concentration --- {\color{red}$V_1$}}\\[0.1cm]
 \hkl<1 0 0> C-Si dumbbell dominated structure
 \begin{itemize}
- \item Si-C bumbs around 0.19 nm
- \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
-       concatenated dumbbells of various orientation
- \item Si-Si NN distance stretched to 0.3 nm
+ \item Si-C bumbs around \unit[0.19]{nm}
+ \item C-C peak at \unit[0.31]{nm} (expected in 3C-SiC):\\
+       concatenated differently oriented \ci{} DBs
+ \item Si-Si NN distance stretched to \unit[0.3]{nm}
 \end{itemize}
-{\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
-\underline{High C concentration ($V_2$, $V_3$)}\\
-High amount of strongly bound C-C bonds\\
-Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
-Only short range order observable\\
-{\color{blue}$\Rightarrow$ amorphous SiC-like phase}
-\end{minipage} 
-
-\begin{pspicture}(0,0)(0,0)
-\rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
-\begin{minipage}{10cm}
-\small
-{\color{red}\bf 3C-SiC formation fails to appear}
+\begin{pspicture}(0,0)(6.0,1.0)
+\rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
+\begin{minipage}{6cm}
+\centering
+Formation of \ci{} dumbbells\\
+C atoms in proper 3C-SiC distance first
+\end{minipage}
+}}
+\end{pspicture}\\[0.1cm]
+\underline{High C concentration --- {\color{green}$V_2$}/{\color{blue}$V_3$}}
 \begin{itemize}
-\item Low C concentration simulations
- \begin{itemize}
-  \item Formation of \ci{} indeed occurs
-  \item Agllomeration not observed
- \end{itemize}
-\item High C concentration simulations
- \begin{itemize}
-  \item Amorphous SiC-like structure\\
-        (not expected at prevailing temperatures)
-  \item Rearrangement and transition into 3C-SiC structure missing
- \end{itemize}
+\item High amount of strongly bound C-C bonds
+\item Increased defect \& damage density\\
+      $\rightarrow$ Arrangements hard to categorize and trace
+\item Only short range order observable
 \end{itemize}
+\begin{pspicture}(0,0)(6.0,0.8)
+\rput(3.2,0.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
+\begin{minipage}{6cm}
+\centering
+Amorphous SiC-like phase
 \end{minipage}
- }}}
+}}
+\end{pspicture}\\[0.3cm]
+\begin{pspicture}(0,0)(6.0,2.0)
+\rput(3.2,1.0){\psframebox[linewidth=0.05cm,linecolor=black]{
+\begin{minipage}{6cm}
+\vspace{0.1cm}
+\centering
+{\bf\color{red}3C-SiC formation fails to appear}\\[0.3cm]
+\begin{minipage}{0.8cm}
+{\bf\boldmath $V_1$:}
+\end{minipage}
+\begin{minipage}{5.1cm}
+Formation of \ci{} indeed occurs\\
+Agllomeration not observed
+\end{minipage}\\[0.3cm]
+\begin{minipage}{0.8cm}
+{\bf\boldmath $V_{2,3}$:}
+\end{minipage}
+\begin{minipage}{5.1cm}
+Amorphous SiC-like structure\\
+(not expected at \degc{450})\\[0.05cm]
+No rearrangement/transition into 3C-SiC
+\end{minipage}\\[0.1cm]
+\end{minipage}
+}}
 \end{pspicture}
+\end{minipage} 
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf
-  Limitations of molecular dynamics and short range potentials
- }
+\headphd
+{\large\bf
+ Limitations of MD and short range potentials
+}
 
-\footnotesize
+\small
 
 \vspace{0.2cm}
 
-\underline{Time scale problem of MD}\\[0.2cm]
-Minimize integration error\\
-$\Rightarrow$ discretization considerably smaller than
-              reciprocal of fastest vibrational mode\\[0.1cm]
-Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
-$\Rightarrow$ suitable choice of time step:
-              $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
-$\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
-Several local minima in energy surface separated by large energy barriers\\
-$\Rightarrow$ transition event corresponds to a multiple
+{\bf Time scale problem of MD}\\[0.2cm]
+Precise integration \& thermodynamic sampling\\
+$\Rightarrow$ $\Delta t \ll \left( \max{\omega} \right)^{-1}$,
+              $\omega$: vibrational mode\\
+$\Rightarrow$ {\color{red}\underline{Slow}} phase space propagation\\[0.2cm]
+Several local minima separated by large energy barriers\\
+$\Rightarrow$ Transition event corresponds to a multiple
               of vibrational periods\\
-$\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
-              infrequent transition events\\[0.1cm]
+$\Rightarrow$ Phase transition consists of {\color{red}\underline{many}}
+              infrequent transition events\\[0.2cm]
 {\color{blue}Accelerated methods:}
 \underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
 
-\vspace{0.3cm}
-
-\underline{Limitations related to the short range potential}\\[0.2cm]
-Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
-and 2$^{\text{nd}}$ next neighbours\\
-$\Rightarrow$ overestimated unphysical high forces of next neighbours
-
-\vspace{0.3cm}
+\vspace{0.2cm}
 
-\framebox{
-\color{red}
-Potential enhanced problem of slow phase space propagation
-}
+{\bf Limitations related to the short range potential}\\[0.2cm]
+Cut-off function limits interaction to next neighbours\\
+$\Rightarrow$ Overestimated unphysical high forces of next neighbours
+              (factor: 2.4--3.4)
 
-\vspace{0.3cm}
+\vspace{1.4cm}
 
-\underline{Approach to the (twofold) problem}\\[0.2cm]
+{\bf Approach to the (twofold) problem}\\[0.2cm]
 Increased temperature simulations without TAD corrections\\
-(accelerated methods or higher time scales exclusively not sufficient)
-
-\begin{picture}(0,0)(-260,-30)
-\framebox{
-\begin{minipage}{4.2cm}
-\tiny
-\begin{center}
-\vspace{0.03cm}
-\underline{IBS}
-\end{center}
-\begin{itemize}
-\item 3C-SiC also observed for higher T
-\item higher T inside sample
-\item structural evolution vs.\\
-      equilibrium properties
-\end{itemize}
-\end{minipage}
-}
-\end{picture}
+Accelerated methods or higher time scales exclusively not sufficient!
 
-\begin{picture}(0,0)(-305,-155)
-\framebox{
-\begin{minipage}{2.5cm}
+\begin{pspicture}(0,0)(0,0)
+\rput(4.0,2.8){\psframebox[linewidth=0.07cm,linecolor=red]{
+\begin{minipage}{7.5cm}
+\centering
+\vspace{0.05cm}
+Potential enhanced slow phase space propagation
+\end{minipage}
+}}
+\rput(11.3,7.5){\psframebox[linewidth=0.03cm,linecolor=blue]{
+\begin{minipage}{2.7cm}
 \tiny
-\begin{center}
+\centering
 retain proper\\
-thermodynmic sampling
-\end{center}
+thermodynamic sampling
 \end{minipage}
-}
-\end{picture}
+}}
+\psline[linewidth=0.03cm,linecolor=blue]{<-}(11.3,7.0)(11.0,5.7)
+\rput(10.85,2.6){\psframebox[linewidth=0.03cm,linecolor=blue]{
+\begin{minipage}{3.6cm}
+\tiny
+\centering
+\underline{IBS}\\[0.1cm]
+3C-SiC also observed for higher T\\[0.1cm]
+Higher T inside sample\\[0.1cm]
+Structural evolution vs.\\
+equilibrium properties
+\end{minipage}
+}}
+\psline[linewidth=0.03cm,linecolor=blue]{->}(10.85,1.75)(9.0,1.0)
+\end{pspicture}
 
 \end{slide}
 
 \begin{slide}
 
- {\large\bf
-  Increased temperature simulations at low C concentration
- }
+\headphd
+{\large\bf\boldmath
+ Increased temperature simulations --- $V_1$
+}
 
 \small
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{tot_pc_thesis.ps}
+\begin{minipage}{6.2cm}
+\hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
+\hfill
 \end{minipage}
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
+\begin{minipage}{6.2cm}
+\includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
 \end{minipage}
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
+\begin{minipage}{6.2cm}
+\hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
+\hfill
 \end{minipage}
-\begin{minipage}{6.5cm}
+\begin{minipage}{6.3cm}
 \scriptsize
  \underline{Si-C bonds:}
  \begin{itemize}
@@ -2337,40 +2301,30 @@ thermodynmic sampling
  \end{itemize}
 \end{minipage}
 
-\begin{picture}(0,0)(-330,-74)
-\color{blue}
-\framebox{
-\begin{minipage}{1.6cm}
-\tiny
-\begin{center}
-stretched SiC\\[-0.1cm]
-in c-Si
-\end{center}
-\end{minipage}
-}
-\end{picture}
-
 \end{slide}
 
 \begin{slide}
 
- {\large\bf
-  Increased temperature simulations at low C concentration
- }
+\headphd
+{\large\bf\boldmath
+ Increased temperature simulations --- $V_1$
+}
 
 \small
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{tot_pc_thesis.ps}
+\begin{minipage}{6.2cm}
+\hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc_thesis.ps}
+\hfill
 \end{minipage}
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
+\begin{minipage}{6.2cm}
+\includegraphics[width=6.5cm]{tot_pc3_thesis.ps}
 \end{minipage}
 
-\begin{minipage}{6.5cm}
-\includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
+\begin{minipage}{6.2cm}
+\hspace*{-0.4cm}\includegraphics[width=6.5cm]{tot_pc2_thesis.ps}
+\hfill
 \end{minipage}
-\begin{minipage}{6.5cm}
+\begin{minipage}{6.3cm}
 \scriptsize
  \underline{Si-C bonds:}
  \begin{itemize}
@@ -2397,40 +2351,58 @@ in c-Si
  \end{itemize}
 \end{minipage}
 
-%\begin{picture}(0,0)(-330,-74)
-%\color{blue}
-%\framebox{
-%\begin{minipage}{1.6cm}
-%\tiny
-%\begin{center}
-%stretched SiC\\[-0.1cm]
-%in c-Si
-%\end{center}
-%\end{minipage}
-%}
-%\end{picture}
-
+% conclusions
 \begin{pspicture}(0,0)(0,0)
-\rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
-\begin{minipage}{10cm}
+\rput(6.5,5.0){\psframebox[fillstyle=solid,opacity=0.5,fillcolor=black]{
+\begin{minipage}{14cm}
+\hfill
+\vspace{14cm}
+\end{minipage}
+}}
+\rput(6.5,5.0){\psframebox[fillstyle=solid,fillcolor=white,linewidth=0.1cm]{
+\begin{minipage}{9cm}
+\vspace{0.2cm}
 \small
-{\color{blue}\bf Stretched SiC in c-Si}
+\begin{center}
+{\color{gray}\bf Conclusions on SiC precipitation}\\[0.1cm]
+{\Huge$\lightning$} {\color{red}\ci{}} --- vs --- {\color{blue}\cs{}} {\Huge$\lightning$}\\
+\end{center}
 \begin{itemize}
-\item Consistent to precipitation model involving \cs{}
-\item Explains annealing behavior of high/low T C implants
+\item Stretched coherent SiC structures\\
+$\Rightarrow$ Precipitation process involves {\color{blue}\cs}
+\item Explains annealing behavior of high/low T C implantations
+      \begin{itemize}
+       \item Low T: highly mobile {\color{red}\ci}
+       \item High T: stable configurations of {\color{blue}\cs}
+      \end{itemize}
+\item Role of \si{}
       \begin{itemize}
-       \item Low T: highly mobiel \ci{}
-       \item High T: stable configurations of \cs{}
+       \item Vehicle to rearrange \cs --- [\cs{} \& \si{} $\leftrightarrow$ \ci]
+       \item Building block for surrounding Si host \& further SiC
+       \item Strain compensation \ldots\\
+             \ldots Si/SiC interface\\
+             \ldots within stretched coherent SiC structure
       \end{itemize}
 \end{itemize}
-$\Rightarrow$ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
-$\Rightarrow$ Precipitation mechanism involving \cs{}
+\vspace{0.2cm}
+\centering
+\psframebox[linecolor=blue,linewidth=0.05cm]{
+\begin{minipage}{7cm}
+\centering
+Precipitation mechanism involving \cs\\
+High T $\leftrightarrow$ IBS conditions far from equilibrium\\
 \end{minipage}
- }}}
+}
+\end{minipage}
+\vspace{0.2cm}
+}}
 \end{pspicture}
 
 \end{slide}
 
+% skip high T / C conc ... only here!
+\ifnum1=0
+
 \begin{slide}
 
  {\large\bf
@@ -2497,68 +2469,56 @@ High C \& low T implants
 
 \end{slide}
 
-\begin{slide}
+% skipped high T / C conc
+\fi
 
- {\large\bf
-  Summary and Conclusions
- }
+\begin{slide}
 
- \scriptsize
+{\large\bf
+ Summary / Outlook
+}
 
-%\vspace{0.1cm}
+\small
 
-\framebox{
-\begin{minipage}[t]{12.9cm}
- \underline{Pecipitation simulations}
- \begin{itemize}
-  \item High C concentration $\rightarrow$ amorphous SiC like phase
-  \item Problem of potential enhanced slow phase space propagation
-  \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
-  \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
-  \item High T necessary to simulate IBS conditions (far from equilibrium)
-  \item Precipitation by successive agglomeration of \cs (epitaxy)
-  \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
-        (stretched SiC, interface)
- \end{itemize}
+\begin{pspicture}(0,0)(12,1.0)
+\psframebox[fillstyle=gradient,gradbegin=hred,gradend=white,gradlines=1000,gradmidpoint=1.0,linestyle=none]{
+\begin{minipage}{11cm}
+{\color{black}Diploma thesis}\\
+ \underline{Monte Carlo} simulation modeling the selforganization process\\
+ leading to periodic arrays of nanometric amorphous SiC precipitates
 \end{minipage}
 }
-
-%\vspace{0.1cm}
-
-\framebox{
-\begin{minipage}{12.9cm}
- \underline{Defects}
- \begin{itemize}
-   \item DFT / EA
-        \begin{itemize}
-         \item Point defects excellently / fairly well described
-               by DFT / EA
-         \item C$_{\text{sub}}$ drastically underestimated by EA
-         \item EA predicts correct ground state:
-               C$_{\text{sub}}$ \& \si{} $>$ \ci{}
-         \item Identified migration path explaining
-               diffusion and reorientation experiments by DFT
-         \item EA fails to describe \ci{} migration:
-               Wrong path \& overestimated barrier
-        \end{itemize}
-   \item Combinations of defects
-         \begin{itemize}
-          \item Agglomeration of point defects energetically favorable
-                by compensation of stress
-          \item Formation of C-C unlikely
-          \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
-          \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
-                Low barrier (\unit[0.77]{eV}) \& low capture radius
-        \end{itemize}
- \end{itemize}
+\end{pspicture}\\[0.4cm]
+\begin{pspicture}(0,0)(12,2)
+\psframebox[fillstyle=gradient,gradbegin=hblue,gradend=white,gradmidpoint=1.0,gradlines=1000,linestyle=none]{
+\begin{minipage}{11cm}
+{\color{black}Doctoral studies}\\
+ Classical potential \underline{molecular dynamics} simulations \ldots\\
+ \underline{Density functional theory} calculations \ldots\\[0.2cm]
+ \ldots on defect formation and SiC precipitation in Si
 \end{minipage}
 }
-
-\begin{center}
-{\color{blue}
-\framebox{Precipitation by successive agglomeration of \cs{}}
+\end{pspicture}\\[0.5cm]
+\begin{pspicture}(0,0)(12,3)
+\psframebox[fillstyle=solid,fillcolor=white,linestyle=solid]{
+\begin{minipage}{11cm}
+\vspace{0.2cm}
+{\color{black}\bf How to proceed \ldots}\\[0.1cm]
+MC $\rightarrow$ empirical potential MD $\rightarrow$ Ground-state DFT \ldots
+\begin{itemize}
+ \renewcommand\labelitemi{$\ldots$}
+ \item beyond LDA/GGA methods \& ground-state DFT
+\end{itemize}
+Investigation of structure \& structural evolution \ldots
+\begin{itemize}
+ \renewcommand\labelitemi{$\ldots$}
+ \item electronic/optical properties
+ \item electronic correlations
+ \item non-equilibrium systems
+\end{itemize}
+\end{minipage}
 }
-\end{center}
+\end{pspicture}\\[0.5cm]
 
 \end{slide}
 
@@ -2610,4 +2570,3 @@ High C \& low T implants
 
 \end{document}
 
-\fi