finished until outline slide
[lectures/latex.git] / posic / talks / mpi_app.tex
index 157894e..2c9d67f 100644 (file)
@@ -24,6 +24,8 @@
 %\usepackage{epic}
 %\usepackage{eepic}
 
+\usepackage{layout}
+
 \usepackage{graphicx}
 \graphicspath{{../img/}}
 
 \begin{document}
 
 \extraslideheight{10in}
-\slideframe{none}
+\slideframe{plain}
 
 \pagestyle{empty}
 
 % specify width and height
-\slidewidth 27.7cm 
-\slideheight 19.1cm 
+\slidewidth 26.3cm 
+\slideheight 19.9cm 
 
-% shift it into visual area properly
-\def\slideleftmargin{3.3cm}
-\def\slidetopmargin{0.6cm}
+% margin
+\def\slidetopmargin{-0.15cm}
 
 \newcommand{\ham}{\mathcal{H}}
 \newcommand{\pot}{\mathcal{V}}
 \newcommand{\dista}[1]{\unit[#1]{\AA}{}}
 \newcommand{\perc}[1]{\unit[#1]{\%}{}}
 
+% no vertical centering
+%\centerslidesfalse
+
+% layout check
+%\layout
+\begin{slide}
+\center
+{\Huge
+E\\
+F\\
+G\\
+A B C D E F G H G F E D C B A
+G\\
+F\\
+E\\
+}
+\end{slide}
+
 % topic
 
 \begin{slide}
 \end{center}
 \end{slide}
 
+% no vertical centering
+\centerslidesfalse
+
+\ifnum1=0
+
 % intro
 
 \begin{slide}
 
-{\large\bf
- Introduction --- The C/Si system\\
-}
+%{\large\bf
+% Phase diagram of the C/Si system\\
+%}
+
+\vspace*{0.2cm}
 
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.5cm]{si-c_phase.eps}
 \begin{center}
-\includegraphics[width=6.3cm]{si-c_phase.eps}\\
 {\tiny
 R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
 }
 \end{center}
 \begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=red,linewidth=0.1cm](6.95,3.95)(0.5,2.8)
+\psellipse[linecolor=blue,linewidth=0.1cm](3.55,4.0)(0.5,2.9)
 \end{pspicture}
+\end{minipage}
+\begin{minipage}{6cm}
+{\bf Phase diagram of the C/Si system}\\[0.2cm]
+{\color{blue}Stoichiometric composition}
+\begin{itemize}
+\item only chemical stable compound
+\item wide band gap semiconductor\\
+      \underline{silicon carbide}, SiC
+\end{itemize}
+\end{minipage}
 
 \end{slide}
 
-\end{document}
-\ifnum1=0
-
 % motivation / properties / applications of silicon carbide
 
 \begin{slide}
@@ -155,111 +189,89 @@ R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
 
 \begin{pspicture}(0,0)(13.5,5)
 
- \psframe*[linecolor=hb](0,0)(13.5,5)
+ \psframe*[linecolor=hb](-0.2,0)(12.9,5)
 
- \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.5,1)(7,1)(7,3)(5.5,3)
- \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.75,0.5)(8,2)(8,2)(6.75,3.5)
+ \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](5.2,1)(6.5,1)(6.5,3)(5.2,3)
+ \pspolygon[linecolor=hlbb,fillcolor=hlbb,fillstyle=solid](6.4,0.5)(7.7,2)(7.7,2)(6.4,3.5)
 
- \rput[lt](0.2,4.6){\color{gray}PROPERTIES}
+ \rput[lt](0,4.6){\color{gray}PROPERTIES}
 
- \rput[lt](0.5,4){wide band gap}
- \rput[lt](0.5,3.5){high electric breakdown field}
- \rput[lt](0.5,3){good electron mobility}
- \rput[lt](0.5,2.5){high electron saturation drift velocity}
- \rput[lt](0.5,2){high thermal conductivity}
+ \rput[lt](0.3,4){wide band gap}
+ \rput[lt](0.3,3.5){high electric breakdown field}
+ \rput[lt](0.3,3){good electron mobility}
+ \rput[lt](0.3,2.5){high electron saturation drift velocity}
+ \rput[lt](0.3,2){high thermal conductivity}
 
- \rput[lt](0.5,1.5){hard and mechanically stable}
- \rput[lt](0.5,1){chemically inert}
+ \rput[lt](0.3,1.5){hard and mechanically stable}
+ \rput[lt](0.3,1){chemically inert}
 
- \rput[lt](0.5,0.5){radiation hardness}
+ \rput[lt](0.3,0.5){radiation hardness}
 
- \rput[rt](13.3,4.6){\color{gray}APPLICATIONS}
+ \rput[rt](12.7,4.6){\color{gray}APPLICATIONS}
 
- \rput[rt](13,3.85){high-temperature, high power}
- \rput[rt](13,3.5){and high-frequency}
- \rput[rt](13,3.15){electronic and optoelectronic devices}
+ \rput[rt](12.5,3.85){high-temperature, high power}
+ \rput[rt](12.5,3.5){and high-frequency}
+ \rput[rt](12.5,3.15){electronic and optoelectronic devices}
 
- \rput[rt](13,2.35){material suitable for extreme conditions}
- \rput[rt](13,2){microelectromechanical systems}
- \rput[rt](13,1.65){abrasives, cutting tools, heating elements}
+ \rput[rt](12.5,2.35){material suitable for extreme conditions}
+ \rput[rt](12.5,2){microelectromechanical systems}
+ \rput[rt](12.5,1.65){abrasives, cutting tools, heating elements}
 
- \rput[rt](13,0.85){first wall reactor material, detectors}
- \rput[rt](13,0.5){and electronic devices for space}
+ \rput[rt](12.5,0.85){first wall reactor material, detectors}
+ \rput[rt](12.5,0.5){and electronic devices for space}
 
 \end{pspicture}
 
-\begin{picture}(0,0)(-3,68)
-\includegraphics[width=2.6cm]{wide_band_gap.eps}
+\begin{picture}(0,0)(5,-162)
+\includegraphics[height=2.2cm]{3C_SiC_bs.eps}
 \end{picture}
-\begin{picture}(0,0)(-285,-162)
-\includegraphics[width=3.38cm]{sic_led.eps}
+\begin{picture}(0,0)(-120,-162)
+\includegraphics[height=2.2cm]{nasa_600c_led.eps}
 \end{picture}
-\begin{picture}(0,0)(-195,-162)
-\includegraphics[width=2.8cm]{6h-sic_3c-sic.eps}
+\begin{picture}(0,0)(-270,-162)
+\includegraphics[height=2.2cm]{6h-sic_3c-sic.eps}
 \end{picture}
-\begin{picture}(0,0)(-313,65)
-\includegraphics[width=2.2cm]{infineon_schottky.eps}
+%%%%
+\begin{picture}(0,0)(10,65)
+\includegraphics[height=2.8cm]{sic_switch.eps}
 \end{picture}
-\begin{picture}(0,0)(-220,65)
-\includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
+%\begin{picture}(0,0)(-243,65)
+\begin{picture}(0,0)(-110,65)
+\includegraphics[height=2.8cm]{ise_99.eps}
 \end{picture}
-\begin{picture}(0,0)(0,-160)
-\includegraphics[width=3.0cm]{sic_proton.eps}
+%\begin{picture}(0,0)(-135,65)
+\begin{picture}(0,0)(-100,65)
+\includegraphics[height=1.2cm]{infineon_schottky.eps}
 \end{picture}
-\begin{picture}(0,0)(-60,65)
-\includegraphics[width=3.4cm]{sic_switch.eps}
+\begin{picture}(0,0)(-233,65)
+\includegraphics[height=2.8cm]{solar_car.eps}
 \end{picture}
 
 \end{slide}
 
-
-% contents
-
-\begin{slide}
-
-{\large\bf
- Outline
-}
-
- \begin{itemize}
-  \item Implantation of C in Si --- Overview of experimental observations
-  \item Utilized simulation techniques and modeled problems
-        \begin{itemize}
-         \item {\color{blue}Diploma thesis}\\
-               \underline{Monte Carlo} simulations
-               modeling the selforganization process
-               leading to periodic arrays of nanometric amorphous SiC
-               precipitates
-         \item {\color{blue}Doctoral studies}\\
-               Classical potential \underline{molecular dynamics} simulations
-               \ldots\\
-               \underline{Density functional theory} calculations
-               \ldots\\[0.2cm]
-               \ldots on defects and SiC precipitation in Si
-        \end{itemize}
-  \item Summary / Conclusion / Outlook
- \end{itemize}
-
-\end{slide}
-
-
-
-\end{document}
-
-\ifnum1=0
-
-
-% start of contents
+% motivation
 
 \begin{slide}
 
  {\large\bf
-  Polytypes of SiC
+  Polytypes of SiC\\[0.4cm]
  }
 
- \vspace{4cm}
+\includegraphics[width=3.8cm]{cubic_hex.eps}\\
+\begin{minipage}{1.9cm}
+{\tiny cubic (twist)}
+\end{minipage}
+\begin{minipage}{2.9cm}
+{\tiny hexagonal (no twist)}
+\end{minipage}
 
- \small
+\begin{picture}(0,0)(-150,0)
+ \includegraphics[width=7cm]{polytypes.eps}
+\end{picture}
+
+\vspace{0.6cm}
+
+\footnotesize
 
 \begin{tabular}{l c c c c c c}
 \hline
@@ -275,34 +287,20 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
 \hline
 \end{tabular}
 
-{\tiny
- Values for $T=300$ K
-}
-
-\begin{picture}(0,0)(-160,-155)
- \includegraphics[width=7cm]{polytypes.eps}
-\end{picture}
-\begin{picture}(0,0)(-10,-185)
- \includegraphics[width=3.8cm]{cubic_hex.eps}\\
-\end{picture}
-\begin{picture}(0,0)(-10,-175)
- {\tiny cubic (twist)}
-\end{picture}
-\begin{picture}(0,0)(-60,-175)
- {\tiny hexagonal (no twist)}
-\end{picture}
 \begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=green](5.7,3.03)(0.4,0.5)
+\psellipse[linecolor=green](5.7,2.10)(0.4,0.5)
 \end{pspicture}
 \begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=green](5.6,1.68)(0.4,0.2)
+\psellipse[linecolor=green](5.6,0.92)(0.4,0.2)
 \end{pspicture}
 \begin{pspicture}(0,0)(0,0)
-\psellipse[linecolor=red](10.7,1.13)(0.4,0.2)
+\psellipse[linecolor=red](10.45,0.45)(0.4,0.2)
 \end{pspicture}
 
 \end{slide}
 
+% fabrication
+
 \begin{slide}
 
  {\large\bf
@@ -311,110 +309,149 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
 
  \small
  
- \vspace{4pt}
+ \vspace{2pt}
 
- SiC - \emph{Born from the stars, perfected on earth.}
- \vspace{4pt}
+\begin{center}
+ {\color{gray}
+ \emph{Silicon carbide --- Born from the stars, perfected on earth.}
+ }
+\end{center}
 
- Conventional thin film SiC growth:
- \begin{itemize}
-  \item \underline{Sublimation growth using the modified Lely method}
-        \begin{itemize}
-         \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
-         \item Surrounded by polycrystalline SiC in a graphite crucible\\
-               at $T=2100-2400 \, ^{\circ} \text{C}$
-         \item Deposition of supersaturated vapor on cooler seed crystal
-        \end{itemize}
-  \item \underline{Homoepitaxial growth using CVD}
-        \begin{itemize}
-         \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
-         \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
-         \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
-        \end{itemize}
-  \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
-        \begin{itemize}
-         \item Two steps: carbonization and growth
-         \item $T=650-1050 \, ^{\circ} \text{C}$
-         \item SiC/Si lattice mismatch $\approx$ 20 \%
-         \item Quality and size not yet sufficient
-        \end{itemize}
- \end{itemize}
+\vspace{2pt}
 
- \begin{picture}(0,0)(-280,-65)
-  \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
- \end{picture}
- \begin{picture}(0,0)(-280,-55)
-  \begin{minipage}{5cm}
-  {\tiny
-   NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
-   on 6H-SiC substrate
-  }
-  \end{minipage}
- \end{picture}
- \begin{picture}(0,0)(-265,-150)
-  \includegraphics[width=2.4cm]{m_lely.eps}
- \end{picture}
- \begin{picture}(0,0)(-333,-175)
-  \begin{minipage}{5cm}
-  {\tiny
-   1. Lid\\[-7pt]
-   2. Heating\\[-7pt]
-   3. Source\\[-7pt]
-   4. Crucible\\[-7pt]
-   5. Insulation\\[-7pt]
-   6. Seed crystal
-  }
-  \end{minipage}
- \end{picture}
- \begin{picture}(0,0)(-230,-35)
- \framebox{
- {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
+SiC thin films by MBE \& CVD
+\begin{itemize}
+ \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
+ \item \underline{Commercially available} semiconductor power devices based on
+       \underline{\foreignlanguage{greek}{a}-SiC}
+ \item Production of favored \underline{3C-SiC} material
+       \underline{less advanced}
+ \item Quality and size not yet sufficient
+\end{itemize}
+\begin{picture}(0,0)(-310,-20)
+  \includegraphics[width=2.0cm]{cree.eps}
+\end{picture}
+
+\vspace{-0.2cm}
+
+Alternative approach:
+Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
+
+\vspace{0.2cm}
+
+\scriptsize
+
+\framebox{
+\begin{minipage}{3.15cm}
+ \begin{center}
+\includegraphics[width=3cm]{imp.eps}\\
+ {\tiny
+  Carbon implantation
  }
- \end{picture}
- \begin{picture}(0,0)(-230,-10)
- \framebox{
- \begin{minipage}{3cm}
- {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
-                               less advanced}
\end{minipage}
+ \end{center}
+\end{minipage}
+\begin{minipage}{3.15cm}
+ \begin{center}
+\includegraphics[width=3cm]{annealing.eps}\\
+ {\tiny
 \unit[12]{h} annealing at \degc{1200}
  }
- \end{picture}
+ \end{center}
+\end{minipage}
+}
+\begin{minipage}{5.5cm}
+ \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
+ \begin{center}
+ {\tiny
+  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
+ }
+ \end{center}
+\end{minipage}
 
 \end{slide}
 
+% contents
+
 \begin{slide}
 
- {\large\bf
-  Fabrication of silicon carbide
- }
+{\large\bf
+ Systematic investigation of C implantations into Si
+}
 
- \small
+\vspace{1.7cm}
+\begin{center}
+\hspace{-1.0cm}
+\includegraphics[width=0.75\textwidth]{imp_inv.eps}
+\end{center}
 
- Alternative approach:
- Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
- \begin{itemize}
-  \item \underline{Implantation step 1}\\
-        180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
-        $\Rightarrow$ box-like distribution of equally sized
-                       and epitactically oriented SiC precipitates
-                       
-  \item \underline{Implantation step 2}\\
-        180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
-        $\Rightarrow$ destruction of SiC nanocrystals
-                      in growing amorphous interface layers
-  \item \underline{Annealing}\\
-        $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
-        $\Rightarrow$ homogeneous, stoichiometric SiC layer
-                      with sharp interfaces
- \end{itemize}
+\end{slide}
+
+% outline
+
+\begin{slide}
+
+{\large\bf
+ Outline
+}
+
+\vspace{1.7cm}
+\begin{center}
+\hspace{-1.0cm}
+\includegraphics[width=0.75\textwidth]{imp_inv.eps}
+\end{center}
+
+\begin{pspicture}(0,0)(0,0)
+\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\begin{minipage}{11cm}
+{\color{red}Diploma thesis}\\
+ \underline{Monte Carlo} simulation modeling the selforganization process\\
+ leading to periodic arrays of nanometric amorphous SiC precipitates
+\end{minipage}
+}}}
+\end{pspicture}
+\begin{pspicture}(0,0)(0,0)
+\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\begin{minipage}{11cm}
+{\color{blue}Doctoral studies}\\
+ Classical potential \underline{molecular dynamics} simulations \ldots\\
+ \underline{Density functional theory} calculations \ldots\\[0.2cm]
+ \ldots on defect formation and SiC precipitation in Si
+\end{minipage}
+}}}
+\end{pspicture}
+\begin{pspicture}(0,0)(0,0)
+\psellipse[linecolor=red,linewidth=0.05cm](5,3.0)(0.8,1.0)
+\end{pspicture}
+\begin{pspicture}(0,0)(0,0)
+\psellipse[linecolor=blue,linewidth=0.05cm](8.2,3.2)(1.5,1.6)
+\end{pspicture}
+
+\end{slide}
+
+% continue here
+\fi
+\begin{slide}
+
+{\large\bf
+ Selforganization of nanometric amorphous SiC lamellae
+}
+
+\begin{minipage}{6cm}
+\includegraphics[width=6cm]{}
+\end{minipage}
+
+\end{slide}
+
+
+\end{document}
+\ifnum1=0
+
+\begin{slide}
+
+{\large\bf
+ Selforganization of nanometric amorphous SiC lamellae
+}
 
- \begin{minipage}{6.3cm}
- \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
- {\tiny
-  XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
- }
- \end{minipage}
 \framebox{
  \begin{minipage}{6.3cm}
  \begin{center}
@@ -431,9 +468,8 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
  \end{center}
  \end{minipage}
 }
-\end{slide}
 
+\end{slide}
 
 \begin{slide}