adding colors
[lectures/latex.git] / posic / talks / mpi_app.tex
index f3e3a12..e90f38f 100644 (file)
@@ -20,6 +20,7 @@
 
 \usepackage{pstricks}
 \usepackage{pst-node}
+\usepackage{pst-grad}
 
 %\usepackage{epic}
 %\usepackage{eepic}
@@ -143,6 +144,9 @@ E\\
 \end{center}
 \end{slide}
 
+% no vertical centering
+\centerslidesfalse
+
 \ifnum1=0
 
 % intro
@@ -182,6 +186,8 @@ R. I. Scace and G. A. Slack, J. Chem. Phys. 30, 1551 (1959)
 
 \begin{slide}
 
+\vspace*{1.8cm}
+
 \small
 
 \begin{pspicture}(0,0)(13.5,5)
@@ -296,7 +302,6 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
 
 \end{slide}
 
-\fi
 % fabrication
 
 \begin{slide}
@@ -309,13 +314,15 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
  
  \vspace{2pt}
 
+\begin{center}
  {\color{gray}
  \emph{Silicon carbide --- Born from the stars, perfected on earth.}
  }
+\end{center}
 
 \vspace{2pt}
 
-SiC thin film by MBE \& CVD
+SiC thin films by MBE \& CVD
 \begin{itemize}
  \item Much progress achieved in homo/heteroepitaxial SiC thin film growth
  \item \underline{Commercially available} semiconductor power devices based on
@@ -328,141 +335,334 @@ SiC thin film by MBE \& CVD
   \includegraphics[width=2.0cm]{cree.eps}
 \end{picture}
 
-Alternative method: Ion beam synthesis of SiC in Si
+\vspace{-0.2cm}
 
- \begin{itemize}
-  \item \underline{Sublimation growth using the modified Lely method}
-        \begin{itemize}
-         \item SiC single-crystalline seed at $T=1800 \, ^{\circ} \text{C}$
-         \item Surrounded by polycrystalline SiC in a graphite crucible\\
-               at $T=2100-2400 \, ^{\circ} \text{C}$
-         \item Deposition of supersaturated vapor on cooler seed crystal
-        \end{itemize}
-  \item \underline{Homoepitaxial growth using CVD}
-        \begin{itemize}
-         \item Step-controlled epitaxy on off-oriented 6H-SiC substrates
-         \item C$_3$H$_8$/SiH$_4$/H$_2$ at $1100-1500 \, ^{\circ} \text{C}$
-         \item Angle, temperature $\rightarrow$ 3C/6H/4H-SiC
-        \end{itemize}
-  \item \underline{Heteroepitaxial growth of 3C-SiC on Si using CVD/MBE}
-        \begin{itemize}
-         \item Two steps: carbonization and growth
-         \item $T=650-1050 \, ^{\circ} \text{C}$
-         \item SiC/Si lattice mismatch $\approx$ 20 \%
-         \item Quality and size not yet sufficient
-        \end{itemize}
- \end{itemize}
+Alternative approach:
+Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
 
- \begin{picture}(0,0)(-280,-65)
-  \includegraphics[width=3.8cm]{6h-sic_3c-sic.eps}
- \end{picture}
- \begin{picture}(0,0)(-280,-55)
-  \begin{minipage}{5cm}
-  {\tiny
-   NASA: 6H-SiC and 3C-SiC LED\\[-7pt]
-   on 6H-SiC substrate
-  }
-  \end{minipage}
- \end{picture}
- \begin{picture}(0,0)(-265,-150)
-  \includegraphics[width=2.4cm]{m_lely.eps}
- \end{picture}
- \begin{picture}(0,0)(-333,-175)
-  \begin{minipage}{5cm}
-  {\tiny
-   1. Lid\\[-7pt]
-   2. Heating\\[-7pt]
-   3. Source\\[-7pt]
-   4. Crucible\\[-7pt]
-   5. Insulation\\[-7pt]
-   6. Seed crystal
-  }
-  \end{minipage}
- \end{picture}
- \begin{picture}(0,0)(-230,-35)
- \framebox{
- {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
+\vspace{0.2cm}
+
+\scriptsize
+
+\framebox{
+\begin{minipage}{3.15cm}
+ \begin{center}
+\includegraphics[width=3cm]{imp.eps}\\
+ {\tiny
+  Carbon implantation
  }
- \end{picture}
- \begin{picture}(0,0)(-230,-10)
- \framebox{
- \begin{minipage}{3cm}
- {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
-                               less advanced}
\end{minipage}
+ \end{center}
+\end{minipage}
+\begin{minipage}{3.15cm}
+ \begin{center}
+\includegraphics[width=3cm]{annealing.eps}\\
+ {\tiny
 \unit[12]{h} annealing at \degc{1200}
  }
- \end{picture}
+ \end{center}
+\end{minipage}
+}
+\begin{minipage}{5.5cm}
+ \includegraphics[width=5.8cm]{ibs_3c-sic.eps}\\[-0.2cm]
+ \begin{center}
+ {\tiny
+  XTEM: single crystalline 3C-SiC in Si\hkl(1 0 0)
+ }
+ \end{center}
+\end{minipage}
 
 \end{slide}
 
-\end{document}
-\ifnum1=0
-
 % contents
 
 \begin{slide}
 
+{\large\bf
+ Systematic investigation of C implantations into Si
+}
+
+\vspace{1.7cm}
+\begin{center}
+\hspace{-1.0cm}
+\includegraphics[width=0.75\textwidth]{imp_inv.eps}
+\end{center}
+
+\end{slide}
+
+% outline
+
+\fi 
+
+\begin{slide}
+
 {\large\bf
  Outline
 }
 
- \begin{itemize}
-  \item Implantation of C in Si --- Overview of experimental observations
-  \item Utilized simulation techniques and modeled problems
-        \begin{itemize}
-         \item {\color{blue}Diploma thesis}\\
-               \underline{Monte Carlo} simulations
-               modeling the selforganization process
-               leading to periodic arrays of nanometric amorphous SiC
-               precipitates
-         \item {\color{blue}Doctoral studies}\\
-               Classical potential \underline{molecular dynamics} simulations
-               \ldots\\
-               \underline{Density functional theory} calculations
-               \ldots\\[0.2cm]
-               \ldots on defects and SiC precipitation in Si
-        \end{itemize}
-  \item Summary / Conclusion / Outlook
- \end{itemize}
+\vspace{1.7cm}
+\begin{center}
+\hspace{-1.0cm}
+\includegraphics[width=0.75\textwidth]{imp_inv.eps}
+\end{center}
+
+\begin{pspicture}(0,0)(0,0)
+\rput(6.0,7.0){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=white,gradend=red,gradlines=1000,gradmidpoint=0.5,linestyle=none]{
+\begin{minipage}{11cm}
+{\color{black}Diploma thesis}\\
+ \underline{Monte Carlo} simulation modeling the selforganization process\\
+ leading to periodic arrays of nanometric amorphous SiC precipitates
+\end{minipage}
+}}}
+\end{pspicture}
+\begin{pspicture}(0,0)(0,0)
+\rput(6.0,-0.5){\rnode{init}{\psframebox[fillstyle=gradient,gradbegin=white,gradend=blue,gradmidpoint=0.5,gradlines=1000,linestyle=none]{
+\begin{minipage}{11cm}
+{\color{black}Doctoral studies}\\
+ Classical potential \underline{molecular dynamics} simulations \ldots\\
+ \underline{Density functional theory} calculations \ldots\\[0.2cm]
+ \ldots on defect formation and SiC precipitation in Si
+\end{minipage}
+}}}
+\end{pspicture}
+\begin{pspicture}(0,0)(0,0)
+\psellipse[linecolor=red,linewidth=0.05cm](5,3.0)(0.8,1.0)
+\end{pspicture}
+\begin{pspicture}(0,0)(0,0)
+\psellipse[linecolor=blue,linewidth=0.05cm](8.2,3.2)(1.5,1.6)
+\end{pspicture}
 
 \end{slide}
 
+\begin{slide}
 
+{\large\bf
+ Selforganization of nanometric amorphous SiC lamellae
+}
+
+\begin{pspicture}(0,0)(0,0)
+\psframebox[fillstyle=gradient,gradbegin=white,gradend=red,gradlines=1000,gradmidpoint=0.5,linestyle=none]{
+\begin{minipage}{14cm}
+\hfill
+\vspace*{0.5cm}
+\end{minipage}
+}
+\end{pspicture}
+
+\small
+
+\vspace{0.2cm}
+
+\begin{itemize}
+ \item Regularly spaced, nanometric spherical\\
+       and lamellar amorphous inclusions\\
+       at the upper a/c interface
+ \item Carbon accumulation\\
+       in amorphous volumes
+\end{itemize}
+
+\vspace{0.4cm}
+
+\begin{minipage}{12cm}
+\includegraphics[width=9cm]{../../nlsop/img/k393abild1_e_l.eps}\\
+{\scriptsize
+XTEM bright-field, \unit[180]{keV} C$^+ \rightarrow$ Si, \degc{150},
+Dose: \unit[4.3 $\times 10^{17}$]{cm$^{-2}$}
+}
+\end{minipage}
+
+\begin{picture}(0,0)(-182,-215)
+\begin{minipage}{6.5cm}
+\begin{center}
+\includegraphics[width=6.5cm]{../../nlsop/img/eftem.eps}\\[-0.2cm]
+{\scriptsize
+XTEM bright-field and respective EFTEM C map
+}
+\end{center}
+\end{minipage}
+\end{picture}
+
+\end{slide}
 
 \end{document}
+\ifnum1=0
 
 \begin{slide}
 
- {\large\bf
 Fabrication of silicon carbide
- }
+{\large\bf
Model displaying the formation of ordered lamellae
+}
 
- \small
+\vspace{0.1cm}
 
- Alternative approach:
- Ion beam synthesis (IBS) of burried 3C-SiC layers in Si\hkl(1 0 0)
- \begin{itemize}
-  \item \underline{Implantation step 1}\\
-        180 keV C$^+$, $D=7.9\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=500\,^{\circ}\mathrm{C}$\\
-        $\Rightarrow$ box-like distribution of equally sized
-                       and epitactically oriented SiC precipitates
-                       
-  \item \underline{Implantation step 2}\\
-        180 keV C$^+$, $D=0.6\times 10^{17}$ cm$^{-2}$, $T_{\text{i}}=250\,^{\circ}\mathrm{C}$\\
-        $\Rightarrow$ destruction of SiC nanocrystals
-                      in growing amorphous interface layers
-  \item \underline{Annealing}\\
-        $T=1250\,^{\circ}\mathrm{C}$, $t=10\,\text{h}$\\
-        $\Rightarrow$ homogeneous, stoichiometric SiC layer
-                      with sharp interfaces
- \end{itemize}
+\begin{center}
+ \includegraphics[width=8.0cm]{../../nlsop/img/modell_ng_e.eps}
+\end{center}
+
+\footnotesize
+
+\begin{itemize}
+\item Supersaturation of C in c-Si\\
+      $\rightarrow$ {\bf Carbon induced} nucleation of spherical
+      SiC$_x$-precipitates
+\item High interfacial energy between 3C-SiC and c-Si\\
+      $\rightarrow$ {\bf Amorphous} precipitates
+\item \unit[20-- 30]{\%} lower silicon density of a-SiC$_x$ compared to c-Si\\
+      $\rightarrow$ {\bf Lateral strain} (black arrows)
+\item Implantation range near surface\\
+      $\rightarrow$ {\bf Relaxation} of {\bf vertical strain component}
+\item Reduction of the carbon supersaturation in c-Si\\
+      $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina
+      (white arrows)
+\item Remaining lateral strain\\
+      $\rightarrow$ {\bf Strain enhanced} lateral amorphisation
+\item Absence of crystalline neighbours (structural information)\\
+      $\rightarrow$ {\bf Stabilization} of amorphous inclusions 
+      {\bf against recrystallization}
+\end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+{\large\bf
+ Implementation of the Monte Carlo code
+}
+
+\small
+
+\begin{enumerate}
+ \item \underline{Amorphization / Recrystallization}\\
+       Ion collision in discretized target determined by random numbers
+       distributed according to nuclear energy loss.
+       Amorphization/recrystallization probability:
+\[
+p_{c \rightarrow a}(\vec{r}) = {\color{green} p_b} + {\color{blue} p_c c_C(\vec{r})} + {\color{red} \sum_{\textrm{amorphous neighbours}} \frac{p_s c_C(\vec{r'})}{(r-r')^2}}
+\]
+\begin{itemize}
+ \item {\color{green} $p_b$} normal `ballistic' amorphization
+ \item {\color{blue} $p_c$} carbon induced amorphization
+ \item {\color{red} $p_s$} stress enhanced amorphization
+\end{itemize}
+\[
+p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\sum_{direct \, neighbours} \delta (\vec{r'})}{6} \Big) \, \textrm{,}
+\]
+\[
+\delta (\vec r) = \left\{
+\begin{array}{ll}
+        1 & \textrm{if volume at position $\vec r$ is amorphous} \\
+        0 & \textrm{otherwise} \\
+\end{array}
+\right.
+\]
+ \item \underline{Carbon incorporation}\\
+       Incorporation volume determined according to implantation profile
+ \item \underline{Diffusion / Sputtering}
+       \begin{itemize}
+        \item Transfer fraction of C atoms
+              of crystalline into neighbored amorphous volumes
+        \item Remove surface layer
+       \end{itemize}
+\end{enumerate}
+
+\end{slide}
+
+\begin{slide}
+
+\begin{minipage}{3.7cm}
+{\large\bf
+ Results
+}
+
+\footnotesize
+
+\vspace{1.0cm}
+
+Evolution of the \ldots
+\begin{itemize}
+ \item continuous\\
+       amorphous layer
+ \item a/c interface
+ \item lamella precipitates
+\end{itemize}
+\ldots reproduced!\\[1.5cm]
+
+{\color{blue}
+\begin{center}
+Experiment \& simulation\\
+in good agreement\\[1.0cm]
+
+Simulation is able to model the whole depth region\\[1.0cm]
+\end{center}
+}
+
+\end{minipage}
+\begin{minipage}{0.4cm}
+\vfill
+\end{minipage}
+\begin{minipage}{8.0cm}
+ \vspace{-0.2cm}
+ \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e_1-2.eps}\\
+ \includegraphics[width=9cm]{../../nlsop/img/dosis_entwicklung_ng_e2_2-2.eps}
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+{\large\bf
+ Structural \& compositional details
+}
+
+\begin{minipage}[t]{7.5cm}
+\includegraphics[height=6.5cm]{../../nlsop/img/ac_cconc_ver2_e.eps}\\
+\end{minipage}
+\begin{minipage}[t]{5.0cm}
+\includegraphics[height=6.5cm]{../../nlsop/img/97_98_e.eps}
+\end{minipage}
+
+\footnotesize
+
+\vspace{-0.1cm}
+
+\begin{itemize}
+ \item Fluctuation of C concentration in lamellae region
+ \item \unit[8--10]{at.\%} C saturation limit
+       within the respective conditions
+ \item Complementarily arranged and alternating sequence of layers\\
+       with a high and low amount of amorphous regions
+ \item C accumulation in the amorphous phase / Origin of stress
+\end{itemize}
+
+\begin{picture}(0,0)(-265,-30)
+\framebox{
+\begin{minipage}{3cm}
+\begin{center}
+{\color{blue}
+Precipitation process\\
+gets traceable\\
+by simulation!
+}
+\end{center}
+\end{minipage}
+}
+\end{picture}
+
+\end{slide}
+
+
+\end{document}
+
+% continue here
+\fi
+
+\ifnum1=0
+
+\begin{slide}
+
+{\large\bf
+ Model displaying the formation of ordered lamellae
+}
 
- \begin{minipage}{6.3cm}
- \includegraphics[width=6cm]{ibs_3c-sic.eps}\\[-0.2cm]
- {\tiny
-  XTEM micrograph of single crystalline 3C-SiC in Si\hkl(1 0 0)
- }
- \end{minipage}
 \framebox{
  \begin{minipage}{6.3cm}
  \begin{center}
@@ -479,9 +679,8 @@ Alternative method: Ion beam synthesis of SiC in Si
  \end{center}
  \end{minipage}
 }
-\end{slide}
 
+\end{slide}
 
 \begin{slide}