a bit more ...
[lectures/latex.git] / posic / talks / seminar_2010.tex
index ce2956b..75ceb62 100644 (file)
@@ -1,6 +1,6 @@
 \pdfoutput=0
-\documentclass[landscape,semhelv,draft]{seminar}
-%\documentclass[landscape,semhelv]{seminar}
+%\documentclass[landscape,semhelv,draft]{seminar}
+\documentclass[landscape,semhelv]{seminar}
 
 \usepackage{verbatim}
 \usepackage[greek,german]{babel}
 
 \end{pspicture}
 
-\begin{picture}(0,0)(-10,68)
+\begin{picture}(0,0)(-3,68)
 \includegraphics[width=2.6cm]{wide_band_gap.eps}
 \end{picture}
-\begin{picture}(0,0)(-295,-165)
-\includegraphics[width=3cm]{sic_led.eps}
+\begin{picture}(0,0)(-285,-162)
+\includegraphics[width=3.38cm]{sic_led.eps}
 \end{picture}
-\begin{picture}(0,0)(-215,-165)
-\includegraphics[width=2.5cm]{6h-sic_3c-sic.eps}
+\begin{picture}(0,0)(-195,-162)
+\includegraphics[width=2.8cm]{6h-sic_3c-sic.eps}
 \end{picture}
 \begin{picture}(0,0)(-313,65)
 \includegraphics[width=2.2cm]{infineon_schottky.eps}
 \begin{picture}(0,0)(-220,65)
 \includegraphics[width=2.9cm]{sic_wechselrichter_ise.eps}
 \end{picture}
+\begin{picture}(0,0)(0,-160)
+\includegraphics[width=3.0cm]{sic_proton.eps}
+\end{picture}
+\begin{picture}(0,0)(-60,65)
+\includegraphics[width=3.4cm]{sic_switch.eps}
+\end{picture}
 
 \end{slide}
 
 }
 
  \begin{itemize}
-  \item Polyteps and fabrication of silicon carbide
+  \item Polytyps and fabrication of silicon carbide
   \item Supposed precipitation mechanism of SiC in Si
   \item Utilized simulation techniques
         \begin{itemize}
@@ -314,6 +320,19 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
   }
   \end{minipage}
  \end{picture}
+ \begin{picture}(0,0)(-230,-35)
+ \framebox{
+ {\footnotesize\color{blue}\bf Hex: micropipes along c-axis}
+ }
+ \end{picture}
+ \begin{picture}(0,0)(-230,-10)
+ \framebox{
+ \begin{minipage}{3cm}
+ {\footnotesize\color{blue}\bf 3C-SiC fabrication\\
+                               less advanced}
+ \end{minipage}
+ }
+ \end{picture}
 
 \end{slide}
 
@@ -441,8 +460,14 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
 \psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
 \rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
 \psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
+\rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+ $4a_{\text{Si}}=5a_{\text{SiC}}$
+ }}}
+\rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+\hkl(h k l) planes match
+ }}}
 \end{pspicture}
+
 \end{slide}
 
 \begin{slide}
@@ -529,7 +554,7 @@ V_{\text{eff}}(r)=V_{\text{ext}}(r)+\int\frac{e^2 n(r')}{|r-r'|}d^3r'
 n(r)=\sum_i^N|\Phi_i(r)|^2
 \]
   \item \underline{Self-consistent solution}\\
-$n(r)$ depends on $\Phi_i$, which depends on $V_{\text{eff}}$,
+$n(r)$ depends on $\Phi_i$, which depend on $V_{\text{eff}}$,
 which in turn depends on $n(r)$
   \item \underline{Variational principle}
         - minimize total energy with respect to $n(r)$
@@ -561,8 +586,10 @@ which in turn depends on $n(r)$
 \[
 \rightarrow
 \text{Fourier series: } \Phi_i=\sum_{|G+k|<G_{\text{cut}}} c_j^i \phi_j(r), \quad E_{\text{cut}}=\frac{\hbar^2}{2m}G^2_{\text{cut}}
+\qquad ({\color{blue}300\text{ eV}})
 \]
-  \item \underline{$k$-point sampling} - $\Gamma$-point only calculations
+  \item \underline{Brillouin zone sampling} -
+        {\color{blue}$\Gamma$-point only} calculations
   \item \underline{Pseudo potential} 
         - consider only the valence electrons
   \item \underline{Code} - VASP 4.6
@@ -578,6 +605,10 @@ which in turn depends on $n(r)$
   \item Structural optimization: Conjugate gradient method
  \end{itemize}
 
+\begin{pspicture}(0,0)(0,0)
+\psellipse[linecolor=blue](1.5,6.75)(0.5,0.3)
+\end{pspicture}
+
 \end{slide}
 
 \begin{slide}
@@ -1763,9 +1794,9 @@ Potential enhanced problem of slow phase space propagation
 Increased temperature simulations without TAD corrections\\
 (accelerated methods or higher time scales exclusively not sufficient)
 
-\begin{picture}(0,0)(-262,-10)
-\frame{
-\begin{minipage}{4.3cm}
+\begin{picture}(0,0)(-260,-30)
+\framebox{
+\begin{minipage}{4.2cm}
 \tiny
 \begin{center}
 \vspace{0.03cm}
@@ -1781,9 +1812,9 @@ Increased temperature simulations without TAD corrections\\
 }
 \end{picture}
 
-\begin{picture}(0,0)(-305,-152)
-\frame{
-\begin{minipage}{2.6cm}
+\begin{picture}(0,0)(-305,-155)
+\framebox{
+\begin{minipage}{2.5cm}
 \tiny
 \begin{center}
 retain proper\\
@@ -1798,65 +1829,319 @@ thermodynmic sampling
 \begin{slide}
 
  {\large\bf
-  Increased temperature simulations
+  Increased temperature simulations at low C concentration
  }
 
 \small
 
-Low concentration simulation
-
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
+\end{minipage}
 
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.5cm}
+\scriptsize
+ \underline{Si-C bonds:}
+ \begin{itemize}
+  \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
+  \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
+ \end{itemize}
+ \underline{Si-Si bonds:}
+ {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
+ ($\rightarrow$ 0.325 nm)\\[0.1cm]
+ \underline{C-C bonds:}
+ \begin{itemize}
+  \item C-C next neighbour pairs reduced (mandatory)
+  \item Peak at 0.3 nm slightly shifted
+        \begin{itemize}
+         \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
+               $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
+               combinations (|)\\
+               $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
+               ($\downarrow$)
+         \item Range [|-$\downarrow$]:
+               {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
+               with nearby Si$_{\text{I}}$}
+        \end{itemize}
+ \end{itemize}
+\end{minipage}
 
+\begin{picture}(0,0)(-330,-74)
+\color{blue}
+\framebox{
+\begin{minipage}{1.6cm}
+\tiny
+\begin{center}
+stretched SiC\\[-0.1cm]
+in c-Si
+\end{center}
+\end{minipage}
+}
+\end{picture}
 
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Increased temperature simulations
+  Increased temperature simulations at high C concentration
  }
 
-\small
+\footnotesize
+
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{12_pc_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
+\end{minipage}
 
-High concentration simulation
+\begin{center}
+Decreasing cut-off artifact\\
+High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
+$\Rightarrow$ hard to categorize
+\end{center}
+
+\vspace{0.1cm}
 
+\framebox{
+\begin{minipage}[t]{6.0cm}
+0.186 nm: Si-C pairs $\uparrow$\\
+(as expected in 3C-SiC)\\[0.2cm]
+0.282 nm: Si-C-C\\[0.2cm]
+$\approx$0.35 nm: C-Si-Si
+\end{minipage}
+}
+\begin{minipage}{0.2cm}
+\hfill
+\end{minipage}
+\framebox{
+\begin{minipage}[t]{6.0cm}
+0.15 nm: C-C pairs $\uparrow$\\
+(as expected in graphite/diamond)\\[0.2cm]
+0.252 nm: C-C-C (2$^{\text{nd}}$ NN for diamond)\\[0.2cm]
+0.31 nm: shifted towards 0.317 nm $\rightarrow$ C-Si-C
+\end{minipage}
+}
 
+\vspace{0.1cm}
 
+\begin{center}
+{\color{red}Amorphous} SiC-like phase remains\\
+Slightly sharper peaks
+$\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics}
+due to temperature\\[0.1cm]
+\framebox{
+\bf
+Continue with higher temperatures and longer time scales
+}
+\end{center}
 
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Silicon carbide precipitation simulations
+  Valuation of a practicable temperature limit
  }
 
  \small
+
+\vspace{0.1cm}
+
+\begin{center}
+\framebox{
+{\color{blue}
+Recrystallization is a hard task!
+$\Rightarrow$ Avoid melting!
+}
+}
+\end{center}
  
- 4. temperature limit
+\vspace{0.1cm}
 
+\footnotesize
+
+\begin{minipage}{7.5cm}
+\includegraphics[width=7cm]{fe_and_t.ps}
+\end{minipage}
+\begin{minipage}{5.5cm}
+\underline{Melting does not occur instantly after}\\
+\underline{exceeding the melting point $T_{\text{m}}=2450\text{ K}$}
+\begin{itemize}
+\item required transition enthalpy
+\item hysterisis behaviour
+\end{itemize}
+\underline{Heating up c-Si by 1 K/ps}
+\begin{itemize}
+\item transition occurs at $\approx$ 3125 K
+\item $\Delta E=0.58\text{ eV/atom}=55.7\text{ kJ/mole}$\\
+      (literature: 50.2 kJ/mole)
+\end{itemize}
+\end{minipage}
+
+\vspace{0.1cm}
+
+\framebox{
+\begin{minipage}{4cm}
+Initially chosen temperatures:\\
+$1.0 - 1.2 \cdot T_{\text{m}}$
+\end{minipage}
+}
+\begin{minipage}{3cm}
+\begin{center}
+$\Longrightarrow$
+\end{center}
+\end{minipage}
+\framebox{
+\begin{minipage}{5cm}
+Introduced C (defects)\\
+$\rightarrow$ reduction of transition point\\
+$\rightarrow$ melting already at $T_{\text{m}}$
+\end{minipage}
+}
+
+\vspace{0.4cm}
+
+\begin{center}
+\framebox{
+{\color{blue}
+Maximum temperature used: $0.95\cdot T_{\text{m}}$
+}
+}
+\end{center}
 
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Silicon carbide precipitation simulations
+  Long time scale simulations at maximum temperature
  }
 
- \small
+\small
+
+\vspace{0.1cm}
  
- 5. final TODO
+\underline{Differences}
+\begin{itemize}
+ \item Temperature set to $0.95 \cdot T_{\text{m}}$
+ \item Cubic insertion volume $\Rightarrow$ spherical insertion volume
+ \item Amount of C atoms: 6000 $\rightarrow$ 5500
+       $\Leftrightarrow r_{\text{prec}}=0.3\text{ nm}$
+ \item Simulation volume: 21 unit cells of c-Si in each direction
+\end{itemize}
+
+\footnotesize
+
+\vspace{0.3cm}
+
+\begin{minipage}[t]{4.5cm}
+\begin{center}
+\underline{Low C concentration, Si-C}
+\includegraphics[width=4.5cm]{c_in_si_95_v1_si-c.ps}\\
+Sharper peaks!
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{4.5cm}
+\begin{center}
+\underline{Low C concentration, C-C}
+\includegraphics[width=4.5cm]{c_in_si_95_v1_c-c.ps}\\
+Sharper peaks!\\
+No C agglomeration!
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{4cm}
+\begin{center}
+\underline{High C concentration}
+\includegraphics[width=4.5cm]{c_in_si_95_v2.ps}\\
+No significant changes
+\end{center}
+\end{minipage}
+
+\begin{center}
+\framebox{
+Long time scales and high temperatures most probably not sufficient enough!
+}
+\end{center}
 
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Silicon carbide precipitation simulations
+  Investigation of a silicon carbide precipitate in silicon
  }
 
- \small
+ \footnotesize
+
+\vspace{0.2cm}
+
+\framebox{
+\scriptsize
+\begin{minipage}{5.3cm}
+\[
+\frac{8}{a_{\text{Si}}^3}(
+\underbrace{21^3 a_{\text{Si}}^3}_{=V}
+-\frac{4}{3}\pi x^3)+
+\underbrace{\frac{4}{y^3}\frac{4}{3}\pi x^3}_{\stackrel{!}{=}5500}
+=21^3\cdot 8
+\]
+\[
+\Downarrow
+\]
+\[
+\frac{8}{a_{\text{Si}}^3}\frac{4}{3}\pi x^3=5500
+\Rightarrow x = \left(\frac{5500 \cdot 3}{32 \pi} \right)^{1/3}a_{\text{Si}}
+\]
+\[
+y=\left(\frac{1}{2} \right)^{1/3}a_{\text{Si}}
+\]
+\end{minipage}
+}
+\begin{minipage}{0.3cm}
+\hfill
+\end{minipage}
+\begin{minipage}{7.0cm}
+\underline{Construction}
+\begin{itemize}
+ \item Simulation volume: 21$^3$ unit cells of c-Si
+ \item Spherical topotactically aligned precipitate\\
+       $r=3.0\text{ nm}$ $\Leftrightarrow$ $\approx$ 5500 C atoms
+ \item Create c-Si but skipped inside sphere of radius $x$
+ \item Create 3C-SiC inside sphere of radius $x$\\
+       and lattice constant $y$
+ \item Strong coupling to heat bath ($T=20\,^{\circ}\mathrm{C}$)
+\end{itemize}
+\end{minipage}
+
+\vspace{0.3cm}
+
+\begin{minipage}{6.2cm}
+\includegraphics[width=6cm]{pc_0.ps}
+\end{minipage}
+\begin{minipage}{6.8cm}
+\underline{Results}
+\begin{itemize}
+ \item Slight increase of c-Si lattice constant!
+ \item C-C peaks (imply same distanced Si-Si peaks)
+       \begin{itemize}
+        \item New peak at 0.307 nm: 2$^{\text{nd}}$ NN in 3C-SiC
+        \item Bumps ({\color{green}$\downarrow$}):
+              4$^{\text{th}}$ and 6$^{\text{th}}$ NN
+       \end{itemize}
+ \item 3C-SiC lattice constant: 4.34 \AA (bulk: 4.36 \AA)\\
+       $\rightarrow$ compressed precipitate
+ \item Interface tension:\\
+       20.15 eV/nm$^2$ or $3.23 \times 10^{-4}$ J/cm$^2$\\
+       (literature: $2 - 8 \times 10^{-4}$ J/cm$^2$)
+\end{itemize}
+\end{minipage}
 
 \end{slide}
 
@@ -1866,9 +2151,174 @@ High concentration simulation
   Investigation of a silicon carbide precipitate in silicon
  }
 
+ \footnotesize
+
+\begin{minipage}{7cm}
+\underline{Appended annealing steps}
+\begin{itemize}
+ \item artificially constructed interface\\
+       $\rightarrow$ allow for rearrangement of interface atoms
+ \item check SiC stability
+\end{itemize}
+\underline{Temperature schedule}
+\begin{itemize}
+ \item rapidly heat up structure up to $2050\,^{\circ}\mathrm{C}$\\
+       (75 K/ps)
+ \item slow heating up to $1.2\cdot T_{\text{m}}=2940\text{ K}$
+       by 1 K/ps\\
+       $\rightarrow$ melting at around 2840 K
+       (\href{../video/sic_prec_120.avi}{$\rhd$})
+ \item cooling down structure at 100 \% $T_{\text{m}}$ (1 K/ps)\\
+       $\rightarrow$ no energetically more favorable struture
+\end{itemize}
+\end{minipage}
+\begin{minipage}{6cm}
+\includegraphics[width=6.7cm]{fe_and_t_sic.ps}
+\end{minipage}
+
+\begin{minipage}{4cm}
+\includegraphics[width=4cm]{sic_prec/melt_01.eps}
+\end{minipage}
+\begin{minipage}{0.4cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4cm}
+\includegraphics[width=4cm]{sic_prec/melt_02.eps}
+\end{minipage}
+\begin{minipage}{0.4cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4cm}
+\includegraphics[width=4cm]{sic_prec/melt_03.eps}
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Summary / Conclusion / Outlook
+ }
+
+ \scriptsize
+
+\vspace{0.1cm}
+
+\framebox{
+\begin{minipage}{12.9cm}
+ \underline{Defects}
+ \begin{itemize}
+  \item Summary \& conclusion
+        \begin{itemize}
+         \item Point defects excellently / fairly well described
+               by QM / classical potential simulations
+         \item Identified migration path explaining
+               diffusion and reorientation experiments
+         \item Agglomeration of point defects energetically favorable
+         \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
+        \end{itemize}
+  \item Todo
+        \begin{itemize}
+         \item Discussions concerning interpretation of QM results (Paderborn)
+         \item Compare migration barrier of
+               \hkl<1 1 0> Si and C-Si \hkl<1 0 0> dumbbell
+         \item Combination: Vacancy \& \hkl<1 1 0> Si self-interstitial \&
+                            C-Si \hkl<1 0 0> dumbbell (IBS)
+        \end{itemize}
+ \end{itemize}
+\end{minipage}
+}
+
+\vspace{0.2cm}
+
+\framebox{
+\begin{minipage}[t]{6.2cm}
+ \underline{Pecipitation simulations}
+ \begin{itemize}
+  \item Summary \& conclusion
+        \begin{itemize}
+         \item Low T
+               $\rightarrow$ C-Si \hkl<1 0 0> dumbbell\\
+               dominated structure
+         \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
+         \item High C concentration\\
+               $\rightarrow$ amorphous SiC like phase
+        \end{itemize}
+  \item Todo
+        \begin{itemize}
+         \item Accelerated method: self-guided MD
+         \item Activation relaxation technique
+         \item Constrainted transition path
+        \end{itemize}
+ \end{itemize}
+\end{minipage}
+}
+\framebox{
+\begin{minipage}[t]{6.2cm}
+ \underline{Constructed 3C-SiC precipitate}
+ \begin{itemize}
+  \item Summary \& conclusion
+        \begin{itemize}
+         \item Small / stable / compressed 3C-SiC\\
+               precipitate in slightly stretched\\
+               c-Si matrix
+         \item Interface tension matches experiemnts
+        \end{itemize}
+  \item Todo
+        \begin{itemize}
+         \item Try to improve interface
+         \item Precipitates of different size
+        \end{itemize}
+ \end{itemize}
+\end{minipage}
+}
+
+ \small
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Acknowledgements
+ }
+
+ \vspace{0.1cm}
+
  \small
 
+ Thanks to \ldots
+
+ \underline{Augsburg}
+ \begin{itemize}
+  \item Prof. B. Stritzker (accepting a simulator at EP \RM{4})
+  \item Ralf Utermann (EDV)
+ \end{itemize}
+ \underline{Helsinki}
+ \begin{itemize}
+  \item Prof. K. Nordlund (MD)
+ \end{itemize}
  
+ \underline{Munich}
+ \begin{itemize}
+  \item Bayerische Forschungsstiftung (financial support)
+ \end{itemize}
+ \underline{Paderborn}
+ \begin{itemize}
+  \item Prof. J. Lindner (SiC)
+  \item Prof. G. Schmidt (DFT + financial support)
+  \item Dr. E. Rauls (DFT + SiC)
+ \end{itemize}
+
+\vspace{0.2cm}
+
+\begin{center}
+\framebox{
+\bf Thank you for your attention!
+}
+\end{center}
 
 \end{slide}