finisched limtation part
[lectures/latex.git] / posic / talks / seminar_2010.tex
index 2b7ef58..ce2956b 100644 (file)
@@ -1,5 +1,6 @@
 \pdfoutput=0
 \documentclass[landscape,semhelv,draft]{seminar}
+%\documentclass[landscape,semhelv]{seminar}
 
 \usepackage{verbatim}
 \usepackage[greek,german]{babel}
@@ -74,6 +75,9 @@
 % nice phi
 \renewcommand{\phi}{\varphi}
 
+% roman letters
+\newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}
+
 % colors
 \newrgbcolor{si-yellow}{.6 .6 0}
 \newrgbcolor{hb}{0.75 0.77 0.89}
@@ -1263,26 +1267,26 @@ Erhart/Albe results
 \begin{slide}
 
  {\large\bf\boldmath
-  Migrations involving the C \hkl<1 1 0> dumbbell interstitial\\[-0.1cm]
+  Migrations involving the C \hkl<1 1 0> dumbbell interstitial
  }
 
 \small
 
+\vspace*{0.1cm}
+
 VASP
 
 \begin{minipage}{6.0cm}
 \includegraphics[width=6cm]{vasp_mig/110_mig_vasp.ps}
 \end{minipage}
 \begin{minipage}{7cm}
-\begin{itemize}
- \item Alternative pathway and energies [eV]:\\
-       \hkl<0 -1 0> $\stackrel{0.7}{\rightarrow}$
-       \hkl<1 1 0> $\stackrel{0.95}{\rightarrow}$
-       bond-centered $\stackrel{0.25}{\rightarrow}$ \hkl<0 0 -1>
- \item Consists of three single transitions
- \item Activation energy of second transition slightly higher
-       than direct transition (path 2)
-\end{itemize}
+\underline{Alternative pathway and energies [eV]}\\[0.1cm]
+\hkl<0 -1 0> $\stackrel{0.7}{{\color{red}\longrightarrow}}$
+\hkl<1 1 0> $\stackrel{0.95}{{\color{blue}\longrightarrow}}$
+BC $\stackrel{0.25}{\longrightarrow}$ \hkl<0 0 -1>\\[0.3cm]
+Composed of three single transitions\\[0.3cm]
+Activation energy of second transition slightly\\
+higher than direct transition (path 2)\\[0.3cm]
 $\Rightarrow$ very unlikely to happen
 \end{minipage}\\[0.2cm]
 
@@ -1292,16 +1296,186 @@ Erhart/Albe
 \includegraphics[width=6cm]{110_mig.ps}
 \end{minipage}
 \begin{minipage}{7cm}
+\underline{Alternative pathway and energies [eV]}\\[0.1cm]
+\hkl<0 0 -1> $\stackrel{2.2}{{\color{green}\longrightarrow}}$
+\hkl<1 1 0> $\stackrel{0.9}{{\color{red}\longrightarrow}}$
+\hkl<0 0 -1>\\[0.3cm]
+Composed of two single transitions\\[0.3cm]
+Compared to direct transition: (2.2 eV \& 0.5 eV)\\[0.3cm]
+$\Rightarrow$ more readily constituting a probable transition
+\end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combinations with a C-Si \hkl<1 0 0>-type interstitial
+ }
+
+\small
+
+\vspace*{0.1cm}
+
+Binding energy: 
+$
+E_{\text{b}}=
+E_{\text{f}}^{\text{defect combination}}-
+E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
+E_{\text{f}}^{\text{2nd defect}}
+$
+
+\vspace*{0.1cm}
+
+{\scriptsize
+\begin{tabular}{l c c c c c c}
+\hline
+ $E_{\text{b}}$ [eV] & 1 & 2 & 3 & 4 & 5 & R\\
+ \hline
+ \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66 & -0.19\\
+ \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\
+ \hkl<0 -1 0> & {\color{orange}-2.39} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
+ \hkl<0 1 0> & {\color{cyan}-2.25} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
+ \hkl<-1 0 0> & {\color{orange}-2.39} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88} & {\color{gray}-0.05}\\
+ \hkl<1 0 0> & {\color{cyan}-2.25} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} & {\color{yellow}-0.06}\\
+ \hline
+ C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 & -0.05\\
+ Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\\
+\hline
+\end{tabular}
+}
+
+\vspace*{0.3cm}
+
+\footnotesize
+
+\begin{minipage}[t]{3.8cm}
+\underline{\hkl<1 0 0> at position 1}\\[0.1cm]
+\includegraphics[width=3.5cm]{00-1dc/2-25.eps}
+\end{minipage}
+\begin{minipage}[t]{3.5cm}
+\underline{\hkl<0 -1 0> at position 1}\\[0.1cm]
+\includegraphics[width=3.2cm]{00-1dc/2-39.eps}
+\end{minipage}
+\begin{minipage}[t]{5.5cm}
+\begin{itemize}
+ \item Restricted to VASP simulations
+ \item $E_{\text{b}}=0$ for isolated non-interacting defects
+ \item $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
+ \item Stress compensation / increase
+ \item Most favorable: C clustering
+ \item Unfavored: antiparallel orientations
+ \item Indication of energetically favored\\
+       agglomeration
+\end{itemize}
+\end{minipage}
+
+\begin{picture}(0,0)(-295,-130)
+\includegraphics[width=3.5cm]{comb_pos.eps}
+\end{picture}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combinations of C-Si \hkl<1 0 0>-type interstitials
+ }
+
+\small
+
+\vspace*{0.1cm}
+
+Energetically most favorable combinations along \hkl<1 1 0>
+
+\vspace*{0.1cm}
+
+{\scriptsize
+\begin{tabular}{l c c c c c c}
+\hline
+ & 1 & 2 & 3 & 4 & 5 & 6\\
+\hline
+$E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\
+C-C distance [\AA] & 1.4 & 4.6 & 6.5 & 8.6 & 10.5 & 10.8 \\
+Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0>, \hkl<0 -1 0>\\
+\hline
+\end{tabular}
+}
+
+\vspace*{0.3cm}
+
+\begin{minipage}{7.0cm}
+\includegraphics[width=7cm]{db_along_110_cc.ps}
+\end{minipage}
+\begin{minipage}{6.0cm}
+\begin{center}
+{\color{blue}
+ Interaction proportional to reciprocal cube of C-C distance
+}\\[0.2cm]
+ Saturation in the immediate vicinity
+\end{center}
+\end{minipage}
+
+\vspace{0.2cm}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combinations of substitutional C and \hkl<1 1 0> Si self-interstitials
+ }
+
+ \scriptsize
+
+\begin{center}
+\begin{minipage}{3.2cm}
+\includegraphics[width=3cm]{sub_110_combo.eps}
+\end{minipage}
+\begin{minipage}{7.8cm}
+\begin{tabular}{l c c c c c c}
+\hline
+C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
+                   \hkl<1 0 1> & \hkl<-1 0 1> \\
+\hline
+1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
+2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
+3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
+4 & \RM{4} & B & D & E & E & D \\
+5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
+\hline
+\end{tabular}
+\end{minipage}
+\end{center}
+
+\begin{center}
+\begin{tabular}{l c c c c c c c c c c}
+\hline
+Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
+\hline
+$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
+$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
+$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
+\hline
+\end{tabular}
+\end{center}
+
+\begin{minipage}{6.0cm}
+\includegraphics[width=5.8cm]{c_sub_si110.ps}
+\end{minipage}
+\begin{minipage}{7cm}
+\small
 \begin{itemize}
- \item Alternative pathway and energies [eV]:\\
-       \hkl<0 0 -1> $\stackrel{2.2}{\rightarrow}$
-       \hkl<1 1 0> $\stackrel{0.9}{\rightarrow}$
-       \hkl<0 0 -1>
- \item Consists of two single transitions
- \item Quite compareable with the transition
-       passing the bond-centered configuration (0.9 eV \& 0.5 eV)
+ \item IBS: C may displace Si\\
+       $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
+ \item Assumption:\\
+       \hkl<1 1 0>-type $\rightarrow$ favored combination
+ \renewcommand\labelitemi{$\Rightarrow$}
+ \item Less favorable than C-Si \hkl<1 0 0> dumbbell\\
+       ($E_{\text{f}}=3.88\text{ eV}$)
+ \item Interaction drops quickly to zero\\
+       (low interaction capture radius)
 \end{itemize}
-$\Rightarrow$ constitutes a probable transition
 \end{minipage}
 
 \end{slide}
@@ -1309,11 +1483,370 @@ $\Rightarrow$ constitutes a probable transition
 \begin{slide}
 
  {\large\bf\boldmath
-  Combinations of point defects
+  Migration in C-Si \hkl<1 0 0> and vacancy combinations
  }
 
+ \footnotesize
+
+\vspace{0.1cm}
+
+\begin{minipage}[t]{3cm}
+\underline{Pos 2, $E_{\text{b}}=-0.59\text{ eV}$}\\
+\includegraphics[width=2.8cm]{00-1dc/0-59.eps}
+\end{minipage}
+\begin{minipage}[t]{7cm}
+\vspace{0.2cm}
+\begin{center}
+ Low activation energies\\
+ High activation energies for reverse processes\\
+ $\Downarrow$\\
+ {\color{blue}C$_{\text{sub}}$ very stable}\\
+\vspace*{0.1cm}
+ \hrule
+\vspace*{0.1cm}
+ Without nearby \hkl<1 1 0> Si self-interstitial (IBS)\\
+ $\Downarrow$\\
+ {\color{blue}Formation of SiC by successive substitution by C}
+
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{3cm}
+\underline{Pos 3, $E_{\text{b}}=-3.14\text{ eV}$}\\
+\includegraphics[width=2.8cm]{00-1dc/3-14.eps}
+\end{minipage}
+
+
+\framebox{
+\begin{minipage}{5.9cm}
+\includegraphics[width=5.9cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[0.6cm]
+\begin{center}
+\begin{picture}(0,0)(70,0)
+\includegraphics[width=1.4cm]{vasp_mig/comb_2-1_init.eps}
+\end{picture}
+\begin{picture}(0,0)(30,0)
+\includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_03.eps}
+\end{picture}
+\begin{picture}(0,0)(-10,0)
+\includegraphics[width=1.4cm]{vasp_mig/comb_2-1_seq_06.eps}
+\end{picture}
+\begin{picture}(0,0)(-48,0)
+\includegraphics[width=1.4cm]{vasp_mig/comb_2-1_final.eps}
+\end{picture}
+\begin{picture}(0,0)(12.5,5)
+\includegraphics[width=1cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(97,-10)
+\includegraphics[height=0.9cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\vspace{0.1cm}
+\end{minipage}
+}
+\begin{minipage}{0.3cm}
+\hfill
+\end{minipage}
+\framebox{
+\begin{minipage}{5.9cm}
+\includegraphics[width=5.9cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[0.1cm]
+\begin{center}
+\begin{picture}(0,0)(60,0)
+\includegraphics[width=0.9cm]{vasp_mig/comb_3-1_init.eps}
+\end{picture}
+\begin{picture}(0,0)(25,0)
+\includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_03.eps}
+\end{picture}
+\begin{picture}(0,0)(-20,0)
+\includegraphics[width=0.9cm]{vasp_mig/comb_3-1_seq_07.eps}
+\end{picture}
+\begin{picture}(0,0)(-55,0)
+\includegraphics[width=0.9cm]{vasp_mig/comb_3-1_final.eps}
+\end{picture}
+\begin{picture}(0,0)(12.5,5)
+\includegraphics[width=1cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(95,0)
+\includegraphics[height=0.9cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\vspace{0.1cm}
+\end{minipage}
+}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Conclusion of defect / migration / combined defect simulations
+ }
+
+ \small
+
+\vspace*{0.1cm}
+
+Defect structures
+\begin{itemize}
+ \item Accurately described by quantum-mechanical simulations
+ \item Less correct description by classical potential simulations
+\end{itemize}
+\vspace*{0.2cm}
+\begin{itemize}
+ \item Consistent with solubility data of C in Si
+ \item \hkl<1 0 0> C-Si dumbbell interstitial ground state configuration
+ \item Consistent with reorientation and diffusion experiments
+ \item C migration pathway in Si identified
+\end{itemize} 
+
+\vspace*{0.2cm}
+
+Concerning the precipitation mechanism
+\begin{itemize}
+ \item Agglomeration of C-Si dumbbells energetically favorable
+ \item C-Si indeed favored compared to
+       C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
+ \item Possible low interaction capture radius of
+       C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
+ \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
+       C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
+\end{itemize} 
+
+\vspace*{0.1cm}
+\begin{center}
+{\color{blue}Some results point to a different precipitation mechanism!}
+\end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Silicon carbide precipitation simulations
+ }
+
+ \small
+
+{\scriptsize
+ \begin{pspicture}(0,0)(12,6.5)
+  % nodes
+  \rput(3.5,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+   \parbox{7cm}{
+   \begin{itemize}
+    \item Create c-Si volume
+    \item Periodc boundary conditions
+    \item Set requested $T$ and $p=0\text{ bar}$
+    \item Equilibration of $E_{\text{kin}}$ and $E_{\text{pot}}$
+   \end{itemize}
+  }}}}
+  \rput(3.5,2.7){\rnode{insert}{\psframebox[fillstyle=solid,fillcolor=lachs]{
+   \parbox{7cm}{
+   Insertion of C atoms at constant T
+   \begin{itemize}
+    \item total simulation volume {\pnode{in1}}
+    \item volume of minimal SiC precipitate {\pnode{in2}}
+    \item volume consisting of Si atoms to form a minimal {\pnode{in3}}\\
+          precipitate
+   \end{itemize} 
+  }}}}
+  \rput(3.5,1){\rnode{cool}{\psframebox[fillstyle=solid,fillcolor=lbb]{
+   \parbox{7.0cm}{
+   Run for 100 ps followed by cooling down to $20\, ^{\circ}\textrm{C}$
+  }}}}
+  \ncline[]{->}{init}{insert}
+  \ncline[]{->}{insert}{cool}
+  \psframe[fillstyle=solid,fillcolor=white](7.5,0.7)(13.5,6.3)
+  \rput(7.8,6){\footnotesize $V_1$}
+  \psframe[fillstyle=solid,fillcolor=lightgray](9,2)(12,5)
+  \rput(9.2,4.85){\tiny $V_2$}
+  \psframe[fillstyle=solid,fillcolor=gray](9.25,2.25)(11.75,4.75)
+  \rput(9.55,4.45){\footnotesize $V_3$}
+  \rput(7.9,3.2){\pnode{ins1}}
+  \rput(9.22,2.8){\pnode{ins2}}
+  \rput(11.0,2.4){\pnode{ins3}}
+  \ncline[]{->}{in1}{ins1}
+  \ncline[]{->}{in2}{ins2}
+  \ncline[]{->}{in3}{ins3}
+ \end{pspicture}
+}
+
+\begin{itemize}
+ \item Restricted to classical potential simulations
+ \item $V_2$ and $V_3$ considered due to low diffusion
+ \item Amount of C atoms: 6000
+       ($r_{\text{prec}}\approx 3.1\text{ nm}$, IBS: 2 ... 4 nm)
+ \item Simulation volume: $31\times 31\times 31$ unit cells
+       (238328 Si atoms)
+\end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
+ }
+
+ \small
+
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
+\end{minipage} 
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
+\end{minipage} 
+
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
+\end{minipage} 
+\begin{minipage}{6.5cm}
 \scriptsize
+\underline{Low C concentration ($V_1$)}\\
+\hkl<1 0 0> C-Si dumbbell dominated structure
+\begin{itemize}
+ \item Si-C bumbs around 0.19 nm
+ \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
+       concatenated dumbbells of various orientation
+ \item Si-Si NN distance stretched to 0.3 nm
+\end{itemize}
+{\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
+\underline{High C concentration ($V_2$, $V_3$)}\\
+High amount of strongly bound C-C bonds\\
+Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
+Only short range order observable\\
+{\color{blue}$\Rightarrow$ amorphous SiC-like phase}
+\end{minipage} 
 
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Limitations of molecular dynamics and short range potentials
+ }
+
+\footnotesize
+
+\vspace{0.2cm}
+
+\underline{Time scale problem of MD}\\[0.2cm]
+Minimize integration error\\
+$\Rightarrow$ discretization considerably smaller than
+              reciprocal of fastest vibrational mode\\[0.1cm]
+Order of fastest vibrational mode: $10^{13} - 10^{14}\text{ Hz}$\\
+$\Rightarrow$ suitable choice of time step:
+              $\tau=1\text{ fs}=10^{-15}\text{ s}$\\
+$\Rightarrow$ {\color{red}\underline{slow}} phase space propagation\\[0.1cm]
+Several local minima in energy surface separated by large energy barriers\\
+$\Rightarrow$ transition event corresponds to a multiple
+              of vibrational periods\\
+$\Rightarrow$ phase transition made up of {\color{red}\underline{many}}
+              infrequent transition events\\[0.1cm]
+{\color{blue}Accelerated methods:}
+\underline{Temperature accelerated} MD (TAD), self-guided MD \ldots
+
+\vspace{0.3cm}
+
+\underline{Limitations related to the short range potential}\\[0.2cm]
+Cut-off function pushing forces and energies to zero between 1$^{\text{st}}$
+and 2$^{\text{nd}}$ next neighbours\\
+$\Rightarrow$ overestimated unphysical high forces of next neighbours
+
+\vspace{0.3cm}
+
+\framebox{
+\color{red}
+Potential enhanced problem of slow phase space propagation
+}
+
+\vspace{0.3cm}
+
+\underline{Approach to the (twofold) problem}\\[0.2cm]
+Increased temperature simulations without TAD corrections\\
+(accelerated methods or higher time scales exclusively not sufficient)
+
+\begin{picture}(0,0)(-262,-10)
+\frame{
+\begin{minipage}{4.3cm}
+\tiny
+\begin{center}
+\vspace{0.03cm}
+\underline{IBS}
+\end{center}
+\begin{itemize}
+\item 3C-SiC also observed for higher T
+\item higher T inside sample
+\item structural evolution vs.\\
+      equilibrium properties
+\end{itemize}
+\end{minipage}
+}
+\end{picture}
+
+\begin{picture}(0,0)(-305,-152)
+\frame{
+\begin{minipage}{2.6cm}
+\tiny
+\begin{center}
+retain proper\\
+thermodynmic sampling
+\end{center}
+\end{minipage}
+}
+\end{picture}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Increased temperature simulations
+ }
+
+\small
+
+Low concentration simulation
+
+
+
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Increased temperature simulations
+ }
+
+\small
+
+High concentration simulation
+
+
+
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Silicon carbide precipitation simulations
+ }
+
+ \small
+ 4. temperature limit
+
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Silicon carbide precipitation simulations
+ }
+
+ \small
+ 5. final TODO
 
 \end{slide}
 
@@ -1335,6 +1868,8 @@ $\Rightarrow$ constitutes a probable transition
 
  \small
 
+
 \end{slide}
 
 \end{document}