seminar 2011 ...
[lectures/latex.git] / posic / talks / seminar_2011.tex
index 988543e..ca198d5 100644 (file)
@@ -31,6 +31,9 @@
 
 \usepackage[setpagesize=false]{hyperref}
 
+% units
+\usepackage{units}
+
 \usepackage{semcolor}
 \usepackage{semlayer}           % Seminar overlays
 \usepackage{slidesec}           % Seminar sections and list of slides
 \newrgbcolor{hlbb}{0.825 0.88 0.968}
 \newrgbcolor{lachs}{1.0 .93 .81}
 
+% shortcuts
+\newcommand{\si}{Si$_{\text{i}}${}}
+\newcommand{\ci}{C$_{\text{i}}${}}
+\newcommand{\cs}{C$_{\text{sub}}${}}
+\newcommand{\degc}[1]{\unit[#1]{$^{\circ}$C}{}}
+\newcommand{\distn}[1]{\unit[#1]{nm}{}}
+\newcommand{\dista}[1]{\unit[#1]{\AA}{}}
+\newcommand{\perc}[1]{\unit[#1]{\%}{}}
+
 % topic
 
 \begin{slide}
 
  \vspace{48pt}
 
-Yet another seminar contribution
+Yet another seminar talk
 
  \vspace{08pt}
 
- Augsburg am 26. Mai 2011
+ Augsburg, 26. Mai 2011
 
 \end{center}
 \end{slide}
@@ -385,6 +397,93 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
 
 \end{slide}
 
+
+\begin{slide}
+
+ {\large\bf
+  Supposed precipitation mechanism of SiC in Si
+ }
+
+ \scriptsize
+
+ \vspace{0.1cm}
+
+ \begin{minipage}{3.8cm}
+ Si \& SiC lattice structure\\[0.2cm]
+ \includegraphics[width=3.5cm]{sic_unit_cell.eps}\\[-0.3cm]
+ \hrule
+ \end{minipage}
+ \hspace{0.6cm}
+ \begin{minipage}{3.8cm}
+ \begin{center}
+ \includegraphics[width=3.3cm]{tem_c-si-db.eps}
+ \end{center}
+ \end{minipage}
+ \hspace{0.6cm}
+ \begin{minipage}{3.8cm}
+ \begin{center}
+ \includegraphics[width=3.3cm]{tem_3c-sic.eps}
+ \end{center}
+ \end{minipage}
+
+ \begin{minipage}{4cm}
+ \begin{center}
+ C-Si dimers (dumbbells)\\[-0.1cm]
+ on Si interstitial sites
+ \end{center}
+ \end{minipage}
+ \hspace{0.2cm}
+ \begin{minipage}{4.2cm}
+ \begin{center}
+ Agglomeration of C-Si dumbbells\\[-0.1cm]
+ $\Rightarrow$ dark contrasts
+ \end{center}
+ \end{minipage}
+ \hspace{0.2cm}
+ \begin{minipage}{4cm}
+ \begin{center}
+ Precipitation of 3C-SiC in Si\\[-0.1cm]
+ $\Rightarrow$ Moir\'e fringes\\[-0.1cm]
+ \& release of Si self-interstitials
+ \end{center}
+ \end{minipage}
+
+ \begin{minipage}{3.8cm}
+ \begin{center}
+ \includegraphics[width=3.3cm]{sic_prec_seq_01.eps}
+ \end{center}
+ \end{minipage}
+ \hspace{0.6cm}
+ \begin{minipage}{3.8cm}
+ \begin{center}
+ \includegraphics[width=3.3cm]{sic_prec_seq_02.eps}
+ \end{center}
+ \end{minipage}
+ \hspace{0.6cm}
+ \begin{minipage}{3.8cm}
+ \begin{center}
+ \includegraphics[width=3.3cm]{sic_prec_seq_03.eps}
+ \end{center}
+ \end{minipage}
+
+\begin{pspicture}(0,0)(0,0)
+\psline[linewidth=4pt]{->}(8.5,2)(9.0,2)
+\psellipse[linecolor=blue](11.5,5.8)(0.3,0.5)
+\rput{-20}{\psellipse[linecolor=blue](3.3,8.1)(0.3,0.5)}
+\psline[linewidth=4pt]{->}(4.0,2)(4.5,2)
+\rput(12.7,0.3){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+ $4a_{\text{Si}}=5a_{\text{SiC}}$
+ }}}
+\rput(12.2,8){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+\hkl(h k l) planes match
+ }}}
+\rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
+r = 2 - 4 nm
+ }}}
+\end{pspicture}
+
+\end{slide}
+
 \begin{slide}
 
  {\large\bf
@@ -467,6 +566,30 @@ Thermal conductivity [W/cmK] & 5.0 & 4.9 & 4.9 & 1.5 & 1.3 & 22 \\
 \rput(9.7,6.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=hb]{
 r = 2 - 4 nm
  }}}
+\rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\begin{minipage}{10cm}
+\small
+{\color{red}\bf Controversial views}
+\begin{itemize}
+\item Implantations at high T (Nejim et al.)
+ \begin{itemize}
+  \item Topotactic transformation based on \cs
+  \item \si{} as supply reacting with further C in cleared volume
+ \end{itemize}
+\item Annealing behavior (Serre et al.)
+ \begin{itemize}
+  \item Room temperature implants $\rightarrow$ highly mobile C
+  \item Elevated T implants $\rightarrow$ no/low C redistribution/migration\\
+        (indicate stable \cs{} configurations)
+ \end{itemize}
+\item Strained silicon \& Si/SiC heterostructures
+ \begin{itemize}
+  \item Coherent SiC precipitates (tensile strain)
+  \item Incoherent SiC (strain relaxation)
+ \end{itemize}
+\end{itemize}
+\end{minipage}
+ }}}
 \end{pspicture}
 
 \end{slide}
@@ -504,7 +627,8 @@ r = 2 - 4 nm
   \vspace*{12pt}
         \[
         E = \frac{1}{2} \sum_{i \neq j} \pot_{ij}, \quad
-        \pot_{ij} = f_C(r_{ij}) \left[ f_R(r_{ij}) + b_{ij} f_A(r_{ij}) \right]
+        \pot_{ij} = {\color{red}f_C(r_{ij})}
+        \left[ f_R(r_{ij}) + {\color{blue}b_{ij}} f_A(r_{ij}) \right]
         \]
  \end{itemize}
 
@@ -751,12 +875,12 @@ $E_{\text{f}}=3.96\text{ eV}$\\
   C interstitial point defects in silicon\\[-0.1cm]
  }
 
-\begin{tabular}{l c c c c c c}
+\begin{tabular}{l c c c c c c r}
 \hline
- $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B \\
+ $E_{\text{f}}$ & T & H & \hkl<1 0 0> DB & \hkl<1 1 0> DB & S & B & \cs{} \& \si\\
 \hline
- VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 \\
- Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & 0.75 & 5.59$^*$ \\
+ VASP & unstable & unstable & \underline{3.72} & 4.16 & 1.95 & 4.66 & {\color{green}4.17}\\
+ Erhart/Albe MD & 6.09 & 9.05$^*$ & \underline{3.88} & 5.18 & {\color{red}0.75} & 5.59$^*$ & {\color{green}4.43} \\
 \hline
 \end{tabular}\\[0.1cm]
 
@@ -1193,10 +1317,12 @@ VASP results
 
 \scriptsize
 
+ \vspace{0.1cm}
+
 \begin{minipage}{6.5cm}
 
 \framebox{
-\begin{minipage}{5.9cm}
+\begin{minipage}[t]{5.9cm}
 \begin{flushleft}
 \includegraphics[width=5.9cm]{bc_00-1.ps}\\[2.35cm]
 \end{flushleft}
@@ -1250,7 +1376,6 @@ Erhart/Albe results
  \item Lowest activation energy: $\approx$ 2.2 eV
  \item 2.4 times higher than VASP
  \item Different pathway
- \item Transition minima ($\rightarrow$ \hkl<1 1 0> dumbbell)
 \end{itemize}
 \end{minipage}
 
@@ -1259,38 +1384,55 @@ Erhart/Albe results
 
 \framebox{
 \begin{minipage}{5.9cm}
-\begin{flushright}
-\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
-\end{flushright}
-\begin{center}
-\begin{pspicture}(0,0)(0,0)
-\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
-\end{pspicture}
-\begin{picture}(0,0)(60,-5)
-\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
-\end{picture}
-\begin{picture}(0,0)(0,-5)
-\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
-\end{picture}
-\begin{picture}(0,0)(-55,-5)
-\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
-\end{picture}
-\begin{picture}(0,0)(12.5,5)
-\includegraphics[width=1cm]{100_arrow.eps}
-\end{picture}
-\begin{picture}(0,0)(90,0)
-\includegraphics[height=0.9cm]{001_arrow.eps}
-\end{picture}
-\end{center}
-\vspace{0.2cm}
+%\begin{flushright}
+%\includegraphics[width=5.9cm]{00-1_0-10.ps}\\[0.75cm]
+%\end{flushright}
+%\begin{center}
+%\begin{pspicture}(0,0)(0,0)
+%\psframe[linecolor=red,fillstyle=none](-2.8,-0.25)(3.3,1.1)
+%\end{pspicture}
+%\begin{picture}(0,0)(60,-5)
+%\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_00.eps}
+%\end{picture}
+%\begin{picture}(0,0)(0,-5)
+%\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_min.eps}
+%\end{picture}
+%\begin{picture}(0,0)(-55,-5)
+%\includegraphics[width=0.9cm]{albe_mig/00-1_0-10_red_03.eps}
+%\end{picture}
+%\begin{picture}(0,0)(12.5,5)
+%\includegraphics[width=1cm]{100_arrow.eps}
+%\end{picture}
+%\begin{picture}(0,0)(90,0)
+%\includegraphics[height=0.9cm]{001_arrow.eps}
+%\end{picture}
+%\end{center}
+%\vspace{0.2cm}
+%\end{minipage}
+%}\\[0.2cm]
+%
+%\framebox{
+%\begin{minipage}{5.9cm}
+\includegraphics[width=5.9cm]{00-1_110_0-10_mig_albe.ps}
 \end{minipage}
-}\\[0.2cm]
+}\\[0.1cm]
 
-\framebox{
 \begin{minipage}{5.9cm}
-\includegraphics[width=5.9cm]{00-1_ip0-10.ps}
+Transition involving \ci{} \hkl<1 1 0>
+\begin{itemize}
+ \item Bond-centered configuration unstable\\
+       $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
+ \item Transition minima of path 2 \& 3\\
+       $\rightarrow$ \ci{} \hkl<1 1 0> dumbbell
+ \item Activation energy: $\approx$ 2.2 eV \& 0.9 eV
+ \item 2.4 - 3.4 times higher than VASP
+ \item Rotation of dumbbell orientation
+\end{itemize}
+\vspace{0.1cm}
+\begin{center}
+{\color{blue}Overestimated diffusion barrier}
+\end{center}
 \end{minipage}
-}
 
 \end{minipage}
 
 \end{minipage}
 \begin{minipage}[t]{5.5cm}
 \begin{itemize}
- \item Restricted to VASP simulations
- \item $E_{\text{b}}=0$ for isolated non-interacting defects
- \item $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
+ \item $E_{\text{b}}=0$ $\Leftrightarrow$ non-interacting defects\\
+       $E_{\text{b}} \rightarrow 0$ for increasing distance (R)
  \item Stress compensation / increase
- \item Most favorable: C clustering
  \item Unfavored: antiparallel orientations
  \item Indication of energetically favored\\
        agglomeration
+ \item Most favorable: C clustering
+ \item However: High barrier ($>4\,\text{eV}$)
+ \item $4\times{\color{cyan}-2.25}$ versus $2\times{\color{orange}-2.39}$
+       (Entropy)
 \end{itemize}
 \end{minipage}
 
@@ -1397,11 +1541,17 @@ Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \h
 \includegraphics[width=7cm]{db_along_110_cc.ps}
 \end{minipage}
 \begin{minipage}{6.0cm}
+\begin{itemize}
+ \item Interaction proportional to reciprocal cube of C-C distance
+ \item Saturation in the immediate vicinity
+ \renewcommand\labelitemi{$\Rightarrow$}
+ \item Agglomeration of \ci{} expected
+ \item Absence of C clustering
+\end{itemize}
 \begin{center}
 {\color{blue}
- Interaction proportional to reciprocal cube of C-C distance
-}\\[0.2cm]
- Saturation in the immediate vicinity
+ Consisten with initial precipitation model
+}
 \end{center}
 \end{minipage}
 
@@ -1417,55 +1567,80 @@ Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \h
 
  \scriptsize
 
-\begin{center}
-\begin{minipage}{3.2cm}
-\includegraphics[width=3cm]{sub_110_combo.eps}
-\end{minipage}
-\begin{minipage}{7.8cm}
-\begin{tabular}{l c c c c c c}
-\hline
-C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
-                   \hkl<1 0 1> & \hkl<-1 0 1> \\
-\hline
-1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
-2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
-3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
-4 & \RM{4} & B & D & E & E & D \\
-5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
-\hline
-\end{tabular}
-\end{minipage}
-\end{center}
-
-\begin{center}
-\begin{tabular}{l c c c c c c c c c c}
-\hline
-Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
-\hline
-$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
-$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
-$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
-\hline
-\end{tabular}
-\end{center}
+%\begin{center}
+%\begin{minipage}{3.2cm}
+%\includegraphics[width=3cm]{sub_110_combo.eps}
+%\end{minipage}
+%\begin{minipage}{7.8cm}
+%\begin{tabular}{l c c c c c c}
+%\hline
+%C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
+%                   \hkl<1 0 1> & \hkl<-1 0 1> \\
+%\hline
+%1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
+%2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
+%3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
+%4 & \RM{4} & B & D & E & E & D \\
+%5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
+%\hline
+%\end{tabular}
+%\end{minipage}
+%\end{center}
+
+%\begin{center}
+%\begin{tabular}{l c c c c c c c c c c}
+%\hline
+%Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
+%\hline
+%$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
+%$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
+%$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
+%\hline
+%\end{tabular}
+%\end{center}
 
 \begin{minipage}{6.0cm}
 \includegraphics[width=5.8cm]{c_sub_si110.ps}
 \end{minipage}
 \begin{minipage}{7cm}
-\small
+\scriptsize
 \begin{itemize}
  \item IBS: C may displace Si\\
        $\Rightarrow$ C$_{\text{sub}}$ + \hkl<1 1 0> Si self-interstitial
  \item Assumption:\\
        \hkl<1 1 0>-type $\rightarrow$ favored combination
  \renewcommand\labelitemi{$\Rightarrow$}
- \item Less favorable than C-Si \hkl<1 0 0> dumbbell\\
-       ($E_{\text{f}}=3.88\text{ eV}$)
+ \item Most favorable: \cs{} along \hkl<1 1 0> chain \si{}
+ \item Less favorable than C-Si \hkl<1 0 0> dumbbell
  \item Interaction drops quickly to zero\\
-       (low interaction capture radius)
+       $\rightarrow$ low capture radius
+\end{itemize}
+\begin{center}
+ {\color{blue}
+ IBS process far from equilibrium\\
+ \cs{} \& \si{} instead of thermodynamic ground state
+ }
+\end{center}
+\end{minipage}
+
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.0cm]{162-097.ps}
+\begin{itemize}
+ \item Low migration barrier
 \end{itemize}
 \end{minipage}
+\begin{minipage}{6.5cm}
+\begin{center}
+Ab initio MD at \degc{900}\\
+\includegraphics[width=3.3cm]{md_vasp_01.eps}
+$t=\unit[2230]{fs}$\\
+\includegraphics[width=3.3cm]{md_vasp_02.eps}
+$t=\unit[2900]{fs}$
+\end{center}
+{\color{blue}
+Contribution of entropy to structural formation
+}
+\end{minipage}
 
 \end{slide}
 
@@ -1569,7 +1744,7 @@ $r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456
   Conclusion of defect / migration / combined defect simulations
  }
 
- \small
+ \footnotesize
 
 \vspace*{0.1cm}
 
@@ -1577,34 +1752,36 @@ Defect structures
 \begin{itemize}
  \item Accurately described by quantum-mechanical simulations
  \item Less accurate description by classical potential simulations
+ \item Underestimated formation energy of \cs{} by classical approach
+ \item Both methods predict same ground state: \ci{} \hkl<1 0 0> dumbbell
 \end{itemize}
-\vspace*{0.2cm}
+
+Migration
 \begin{itemize}
- \item \hkl<1 0 0> C-Si dumbbell interstitial ground state configuration
- \item Consistent with reorientation and diffusion experiments
  \item C migration pathway in Si identified
+ \item Consistent with reorientation and diffusion experiments
+\end{itemize} 
+\begin{itemize}
+ \item Different path and ...
+ \item overestimated barrier by classical potential calculations
 \end{itemize} 
 
 Concerning the precipitation mechanism
 \begin{itemize}
  \item Agglomeration of C-Si dumbbells energetically favorable
+       (stress compensation)
  \item C-Si indeed favored compared to
        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
  \item Possible low interaction capture radius of
        C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
+ \item Low barrier for
+       \ci{} \hkl<1 0 0> $\rightarrow$ \cs{} \& \si{} \hkl<1 1 0>
  \item In absence of nearby \hkl<1 1 0> Si self-interstitial:
        C-Si \hkl<1 0 0> + Vacancy $\rightarrow$ C$_{\text{sub}}$ (SiC)
 \end{itemize} 
 \begin{center}
-{\color{blue}Some results point to a different precipitation mechanism!}
+{\color{blue}Results suggest increased participation of \cs}
 \end{center}
-In progress ...
-\begin{itemize}
- \item \hkl<1 0 0> C-Si $\rightarrow$
-       C$_{\text{sub}}$ \& \hkl<1 1 0> Si self-interstitial
- \item \hkl<1 0 0> C-Si combinations: C-C $\rightarrow$ C-...-C
-\end{itemize} 
-
 
 \end{slide}
 
@@ -1708,6 +1885,66 @@ Only short range order observable\\
 
 \end{slide}
 
+\begin{slide}
+
+ {\large\bf\boldmath
+  Silicon carbide precipitation simulations at $450\,^{\circ}\mathrm{C}$ as in IBS
+ }
+
+ \small
+
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{sic_prec_450_si-si_c-c.ps}
+\end{minipage} 
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{sic_prec_450_energy.ps}
+\end{minipage} 
+
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{sic_prec_450_si-c.ps}
+\end{minipage} 
+\begin{minipage}{6.5cm}
+\scriptsize
+\underline{Low C concentration ($V_1$)}\\
+\hkl<1 0 0> C-Si dumbbell dominated structure
+\begin{itemize}
+ \item Si-C bumbs around 0.19 nm
+ \item C-C peak at 0.31 nm (as expected in 3C-SiC):\\
+       concatenated dumbbells of various orientation
+ \item Si-Si NN distance stretched to 0.3 nm
+\end{itemize}
+{\color{blue}$\Rightarrow$ C atoms in proper 3C-SiC distance first}\\
+\underline{High C concentration ($V_2$, $V_3$)}\\
+High amount of strongly bound C-C bonds\\
+Defect density $\uparrow$ $\Rightarrow$ considerable amount of damage\\
+Only short range order observable\\
+{\color{blue}$\Rightarrow$ amorphous SiC-like phase}
+\end{minipage} 
+
+\begin{pspicture}(0,0)(0,0)
+\rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\begin{minipage}{10cm}
+\small
+{\color{red}\bf 3C-SiC formation fails to appear}
+\begin{itemize}
+\item Low C concentration simulations
+ \begin{itemize}
+  \item Formation of \ci{} indeed occurs
+  \item Agllomeration not observed
+ \end{itemize}
+\item High C concentration simulations
+ \begin{itemize}
+  \item Amorphous SiC-like structure\\
+        (not expected at prevailing temperatures)
+  \item Rearrangement and transition into 3C-SiC structure missing
+ \end{itemize}
+\end{itemize}
+\end{minipage}
+ }}}
+\end{pspicture}
+
+\end{slide}
+
 \begin{slide}
 
  {\large\bf
@@ -1846,6 +2083,85 @@ in c-Si
 
 \end{slide}
 
+\begin{slide}
+
+ {\large\bf
+  Increased temperature simulations at low C concentration
+ }
+
+\small
+
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc3_thesis.ps}
+\end{minipage}
+
+\begin{minipage}{6.5cm}
+\includegraphics[width=6.4cm]{tot_pc2_thesis.ps}
+\end{minipage}
+\begin{minipage}{6.5cm}
+\scriptsize
+ \underline{Si-C bonds:}
+ \begin{itemize}
+  \item Vanishing cut-off artifact (above $1650\,^{\circ}\mathrm{C}$)
+  \item Structural change: C-Si \hkl<1 0 0> $\rightarrow$ C$_{\text{sub}}$
+ \end{itemize}
+ \underline{Si-Si bonds:}
+ {\color{blue}Si-C$_{\text{sub}}$-Si} along \hkl<1 1 0>
+ ($\rightarrow$ 0.325 nm)\\[0.1cm]
+ \underline{C-C bonds:}
+ \begin{itemize}
+  \item C-C next neighbour pairs reduced (mandatory)
+  \item Peak at 0.3 nm slightly shifted
+        \begin{itemize}
+         \item C-Si \hkl<1 0 0> combinations (dashed arrows)\\
+               $\rightarrow$ C-Si \hkl<1 0 0> \& C$_{\text{sub}}$
+               combinations (|)\\
+               $\rightarrow$ pure {\color{blue}C$_{\text{sub}}$ combinations}
+               ($\downarrow$)
+         \item Range [|-$\downarrow$]:
+               {\color{blue}C$_{\text{sub}}$ \& C$_{\text{sub}}$
+               with nearby Si$_{\text{I}}$}
+        \end{itemize}
+ \end{itemize}
+\end{minipage}
+
+%\begin{picture}(0,0)(-330,-74)
+%\color{blue}
+%\framebox{
+%\begin{minipage}{1.6cm}
+%\tiny
+%\begin{center}
+%stretched SiC\\[-0.1cm]
+%in c-Si
+%\end{center}
+%\end{minipage}
+%}
+%\end{picture}
+
+\begin{pspicture}(0,0)(0,0)
+\rput(6.7,5.2){\rnode{init}{\psframebox[fillstyle=solid,fillcolor=white]{
+\begin{minipage}{10cm}
+\small
+{\color{blue}\bf Stretched SiC in c-Si}
+\begin{itemize}
+\item Consistent to precipitation model involving \cs{}
+\item Explains annealing behavior of high/low T C implants
+      \begin{itemize}
+       \item Low T: highly mobiel \ci{}
+       \item High T: stable configurations of \cs{}
+      \end{itemize}
+\end{itemize}
+$\Rightarrow$ High T $\leftrightarrow$ IBS conditions far from equilibrium\\
+$\Rightarrow$ Precipitation mechanism involving \cs{}
+\end{minipage}
+ }}}
+\end{pspicture}
+
+\end{slide}
+
 \begin{slide}
 
  {\large\bf
@@ -1861,14 +2177,10 @@ in c-Si
 \includegraphics[width=6.4cm]{12_pc_c_thesis.ps}
 \end{minipage}
 
-\begin{center}
-Decreasing cut-off artifact\\
-High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
-$\Rightarrow$ hard to categorize
-\end{center}
-
 \vspace{0.1cm}
 
+\scriptsize
+
 \framebox{
 \begin{minipage}[t]{6.0cm}
 0.186 nm: Si-C pairs $\uparrow$\\
@@ -1889,72 +2201,28 @@ $\approx$0.35 nm: C-Si-Si
 \end{minipage}
 }
 
-\vspace{0.1cm}
-
-\begin{center}
-{\color{red}Amorphous} SiC-like phase remains\\
-Slightly sharper peaks
-$\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics}
-due to temperature\\[0.1cm]
-\framebox{
-\bf
-Continue with higher temperatures and longer time scales
-}
-\end{center}
-
-\end{slide}
-
-\begin{slide}
-
- {\large\bf
-  Long time scale simulations at maximum temperature
- }
-
-\small
-
-\vspace{0.1cm}
-\underline{Differences}
 \begin{itemize}
- \item Temperature set to $0.95 \cdot T_{\text{m}}$
- \item Cubic insertion volume $\Rightarrow$ spherical insertion volume
- \item Amount of C atoms: 6000 $\rightarrow$ 5500
-       $\Leftrightarrow r_{\text{prec}}=0.3\text{ nm}$
- \item Simulation volume: 21 unit cells of c-Si in each direction
+\item Decreasing cut-off artifact
+\item {\color{red}Amorphous} SiC-like phase remains
+\item High amount of {\color{red}damage} \& alignement to c-Si host matrix lost
+\item Slightly sharper peaks $\Rightarrow$ indicate slight {\color{blue}acceleration of dynamics} due to temperature
 \end{itemize}
 
-\footnotesize
-
-\vspace{0.3cm}
-
-\begin{minipage}[t]{4.5cm}
-\begin{center}
-\underline{Low C concentration, Si-C}
-\includegraphics[width=4.5cm]{c_in_si_95_v1_si-c.ps}\\
-Sharper peaks!
-\end{center}
-\end{minipage}
-\begin{minipage}[t]{4.5cm}
-\begin{center}
-\underline{Low C concentration, C-C}
-\includegraphics[width=4.5cm]{c_in_si_95_v1_c-c.ps}\\
-Sharper peaks!\\
-No C agglomeration!
-\end{center}
-\end{minipage}
-\begin{minipage}[t]{4cm}
-\begin{center}
-\underline{High C concentration}
-\includegraphics[width=4.5cm]{c_in_si_95_v2.ps}\\
-No significant changes\\
-C-Si-Si $\uparrow$\\
-C-Si-C $\downarrow$
-\end{center}
-\end{minipage}
+\vspace{-0.1cm}
 
 \begin{center}
+{\color{blue}
 \framebox{
-Long time scales and high temperatures most probably not sufficient enough!
+{\color{black}
+High C \& small $V$ \& short $t$
+$\Rightarrow$
+}
+Slow restructuring due to strong C-C bonds
+{\color{black}
+$\Leftarrow$
+High C \& low T implants
+}
+}
 }
 \end{center}
 
@@ -1963,71 +2231,65 @@ Long time scales and high temperatures most probably not sufficient enough!
 \begin{slide}
 
  {\large\bf
-  Summary / Conclusion / Outlook
+  Summary and Conclusions
  }
 
  \scriptsize
 
-\vspace{0.1cm}
+%\vspace{0.1cm}
 
 \framebox{
-\begin{minipage}{12.9cm}
- \underline{Defects}
+\begin{minipage}[t]{12.9cm}
+ \underline{Pecipitation simulations}
  \begin{itemize}
-  \item Summary \& conclusion
-        \begin{itemize}
-         \item Point defects excellently / fairly well described
-               by QM / classical potential simulations
-         \item Identified migration path explaining
-               diffusion and reorientation experiments
-         \item Agglomeration of point defects energetically favorable
-         \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
-        \end{itemize}
-  \item In progress
-        \begin{itemize}
-         \item Migrations separating C-C bond in \hkl<1 0 0> C-Si dumbbell
-               interstitial combination
-         \item Migration: \hkl<1 0 0> C-Si $\rightarrow$
-                          C$_{\text{sub}}$ \& Si \hkl<1 1 0> interstitial
-        \end{itemize}
-  \item Todo
-        \begin{itemize}
-         \item Discussions concerning interpretation of QM results (Paderborn)
-         \item Compare migration barrier of
-               \hkl<1 1 0> Si and C-Si \hkl<1 0 0> dumbbell
-         \item Combination: Vacancy \& \hkl<1 1 0> Si self-interstitial \&
-                            C-Si \hkl<1 0 0> dumbbell (IBS)
-        \end{itemize}
+  \item High C concentration $\rightarrow$ amorphous SiC like phase
+  \item Problem of potential enhanced slow phase space propagation
+  \item Low T $\rightarrow$ C-Si \hkl<1 0 0> dumbbell dominated structure
+  \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
+  \item High T necessary to simulate IBS conditions (far from equilibrium)
+  \item Precipitation by successive agglomeration of \cs (epitaxy)
+  \item \si{}: vehicle to form \cs{} \& supply of Si \& stress compensation
+        (stretched SiC, interface)
  \end{itemize}
 \end{minipage}
 }
 
-\vspace{0.2cm}
+%\vspace{0.1cm}
 
 \framebox{
-\begin{minipage}[t]{12.9cm}
- \underline{Pecipitation simulations}
+\begin{minipage}{12.9cm}
+ \underline{Defects}
  \begin{itemize}
-  \item Summary \& conclusion
+   \item DFT / EA
         \begin{itemize}
-         \item Low T
-               $\rightarrow$ C-Si \hkl<1 0 0> dumbbell
-               dominated structure
-         \item High T $\rightarrow$ C$_{\text{sub}}$ dominated structure
-         \item High C concentration
-               $\rightarrow$ amorphous SiC like phase
+         \item Point defects excellently / fairly well described
+               by DFT / EA
+         \item C$_{\text{sub}}$ drastically underestimated by EA
+         \item EA predicts correct ground state:
+               C$_{\text{sub}}$ \& \si{} $>$ \ci{}
+         \item Identified migration path explaining
+               diffusion and reorientation experiments by DFT
+         \item EA fails to describe \ci{} migration:
+               Wrong path \& overestimated barrier
         \end{itemize}
-  \item Todo
-        \begin{itemize}
-         \item Accelerated method: self-guided MD
-         \item Activation relaxation technique
-         \item Constrainted transition path
+   \item Combinations of defects
+         \begin{itemize}
+          \item Agglomeration of point defects energetically favorable
+                by compensation of stress
+          \item Formation of C-C unlikely
+          \item C$_{\text{sub}}$ favored conditions (conceivable in IBS)
+          \item \ci{} \hkl<1 0 0> $\leftrightarrow$ \cs{} \& \si{} \hkl<1 1 0>\\
+                Low barrier (\unit[0.77]{eV}) \& low capture radius
         \end{itemize}
  \end{itemize}
 \end{minipage}
 }
 
- \small
+\begin{center}
+{\color{blue}
+\framebox{Precipitation by successive agglomeration of \cs{}}
+}
+\end{center}
 
 \end{slide}
 
@@ -2045,7 +2307,7 @@ Long time scales and high temperatures most probably not sufficient enough!
 
  \underline{Augsburg}
  \begin{itemize}
-  \item Prof. B. Stritzker (accepting a simulator at EP \RM{4})
+  \item Prof. B. Stritzker (accomodation at EP \RM{4})
   \item Ralf Utermann (EDV)
  \end{itemize}