some new stuff + new todo ...
[lectures/latex.git] / posic / talks / upb-ua-xc.tex
index a3d1048..4197c0a 100644 (file)
@@ -97,7 +97,7 @@
 
  \vspace{08pt}
 
- June 2009
+ July 2009
 
 \end{center}
 \end{slide}
@@ -185,6 +185,7 @@ POTIM = 0.1
   \item Supercell: $x_1=(2,0,0),\, x_2=(0,2,0),\, x_3=(0,0,2)$;
         64 atoms (32 pc)
  \end{enumerate}
+ \begin{minipage}{6cm}
  Cohesive energy / Lattice constant:
  \begin{enumerate}
   \item $E_{\textrm{cut-off}}=150\, \textrm{eV}$: 5.955 eV / 5.378 \AA\\
@@ -197,32 +198,397 @@ POTIM = 0.1
         $E_{\textrm{cut-off}}=300\, \textrm{eV}^{*}$: 5.975 eV / 5.390 \AA
   \item $E_{\textrm{cut-off}}=300\, \textrm{eV}$: 5.977 eV / 5.389 \AA
  \end{enumerate}
+ \end{minipage}
+ \begin{minipage}{7cm}
+ \includegraphics[width=7cm]{si_lc_and_ce.ps}
+ \end{minipage}\\[0.3cm]
+ {\scriptsize
+  $^*$special settings (p. 138, VASP manual):
+  spin polarization, no symmetry, ...
+ }
  
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Interstitial configurations
+  Silicon bulk properties
+ }
+
+ \begin{itemize}
+  \item Calculation of cohesive energies for different lattice constants
+  \item No ionic update
+  \item Tetrahedron method with Blöchl corrections for
+        the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
+  \item Supercell 3 (8 atoms, 4 primitive cells)
+ \end{itemize}
+ \vspace*{0.6cm}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ $E_{\textrm{cut-off}}=150$ eV\\
+ \includegraphics[width=6.5cm]{si_lc_fit.ps}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ $E_{\textrm{cut-off}}=250$ eV\\
+ \includegraphics[width=6.5cm]{si_lc_fit_250.ps}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  3C-SiC bulk properties\\[0.2cm]
  }
 
- Silicon:
+ \begin{minipage}{6.5cm}
+ \includegraphics[width=6.5cm]{sic_lc_and_ce2.ps}
+ \end{minipage}
+ \begin{minipage}{6.5cm}
+ \includegraphics[width=6.5cm]{sic_lc_and_ce.ps}
+ \end{minipage}\\[0.3cm]
  \begin{itemize}
-  \item Lattice constant:
-  \item Cohesive energy: 5.95 eV, 5.99 eV, 5.96 eV, 5.98 eV
+  \item Supercell 3 (4 primitive cells, 4+4 atoms)
+  \item Error in equilibrium lattice constant: {\color{green} $0.9\,\%$}
+  \item Error in cohesive energy: {\color{red} $31.6\,\%$}
  \end{itemize}
  
- <100> interstitial:
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  3C-SiC bulk properties\\[0.2cm]
+ }
+
+ \small
+
  \begin{itemize}
-  \item Lattice constant:
-  \item Cohesive energy:
+  \item Calculation of cohesive energies for different lattice constants
+  \item No ionic update
+  \item Tetrahedron method with Blöchl corrections for
+        the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
  \end{itemize}
+ \vspace*{0.6cm}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ Supercell 3, $4\times 4\times 4$ k-points\\
+ \includegraphics[width=6.5cm]{sic_lc_fit.ps}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ {\color{red}
+  Non-continuous energies\\
+  for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!\\
+ }
+ \vspace*{0.5cm}
+ {\footnotesize
+ Does this matter in structural optimizaton simulations?
+ \begin{itemize}
+  \item Derivative might be continuous
+  \item Similar lattice constants where derivative equals zero
+ \end{itemize}
+ }
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  3C-SiC bulk properties\\[0.2cm]
+ }
+
+ \footnotesize
+
+\begin{picture}(0,0)(-188,80)
+ %Supercell 1, $3\times 3\times 3$ k-points\\
+ \includegraphics[width=6.5cm]{sic_lc_fit_k3.ps}
+\end{picture}
+
+ \begin{minipage}{6.5cm}
+ \begin{itemize}
+  \item Supercell 1 simulations
+  \item Variation of k-points
+  \item Continuous energies for
+        $E_{\textrm{cut-off}} > 550\,\textrm{eV}$
+  \item Critical $E_{\textrm{cut-off}}$ for
+        different k-points\\
+        depending on supercell?
+ \end{itemize}
+ \end{minipage}\\[1.0cm]
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ \includegraphics[width=6.5cm]{sic_lc_fit_k5.ps}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ \includegraphics[width=6.5cm]{sic_lc_fit_k7.ps}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Cohesive energies
+ }
+
+ {\bf\color{red} From now on ...}
+
+ {\small Energies used: free energy without entropy ($\sigma \rightarrow 0$)}
+
+ \small
 
- Hexagonal interstitial:
  \begin{itemize}
-  \item Lattice constant:
-  \item Cohesive energy:
+  \item $E_{\textrm{free,sp}}$:
+        energy of spin polarized free atom
+        \begin{itemize}
+         \item $k$-points: Monkhorst $1\times 1\times 1$
+         \item Symmetry switched off
+         \item Spin polarized calculation
+         \item Interpolation formula according to Vosko Wilk and Nusair
+               for the correlation part of the exchange correlation functional
+         \item Gaussian smearing for the partial occupancies
+               $f(\{\epsilon_{n{\bf k}}\})$
+               ($\sigma=0.05$)
+         \item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001
+         \item Supercell: one atom in cubic
+               $10\times 10\times 10$ \AA$^3$ box
+        \end{itemize}
+        {\color{blue}
+        $E_{\textrm{free,sp}}(\textrm{Si},{\color{green}250}\, \textrm{eV})=
+         -0.70036911\,\textrm{eV}$
+        }\\
+        {\color{blue}
+        $E_{\textrm{free,sp}}(\textrm{Si},{\color{red}650}\, \textrm{eV})=
+         -0.70021403\,\textrm{eV}$
+        },
+        {\color{gray}
+        $E_{\textrm{free,sp}}(\textrm{C},{\color{red}650}\, \textrm{eV})=
+         -1.3535731\,\textrm{eV}$
+        }
+  \item $E$:
+        energy (non-polarized) of system of interest composed of\\
+        n atoms of type N, m atoms of type M, \ldots
  \end{itemize}
+ \vspace*{0.2cm}
+ {\color{red}
+ \[
+ \Rightarrow
+ E_{\textrm{coh}}=\frac{
+ -\Big(E(N_nM_m\ldots)-nE_{\textrm{free,sp}}(N)-mE_{\textrm{free,sp}}(M)
+ -\ldots\Big)}
+ {n+m+\ldots}
+ \]
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Used types of supercells\\
+ }
+
+ \footnotesize
+
+ \begin{minipage}{4.3cm}
+  \includegraphics[width=4cm]{sc_type0.eps}\\[0.3cm]
+  \underline{Type 0}\\[0.2cm]
+  Basis: fcc\\
+  $x_1=(0.5,0.5,0)$\\
+  $x_2=(0,0.5,0.5)$\\
+  $x_3=(0.5,0,0.5)$\\
+  1 primitive cell / 2 atoms
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+  \includegraphics[width=4cm]{sc_type1.eps}\\[0.3cm]
+  \underline{Type 1}\\[0.2cm]
+  Basis:\\
+  $x_1=(0.5,-0.5,0)$\\
+  $x_2=(0.5,0.5,0)$\\
+  $x_3=(0,0,1)$\\
+  2 primitive cells / 4 atoms
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+  \includegraphics[width=4cm]{sc_type2.eps}\\[0.3cm]
+  \underline{Type 2}\\[0.2cm]
+  Basis: sc\\
+  $x_1=(1,0,0)$\\
+  $x_2=(0,1,0)$\\
+  $x_3=(0,0,1)$\\
+  4 primitive cells / 8 atoms
+ \end{minipage}\\[0.4cm]
+
+ {\bf\color{blue}
+ In the following these types of supercells are used and
+ are possibly scaled by integers in the different directions!
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Silicon point defects\\
+ }
+
+ \small
+
+ Calculation of formation energy $E_{\textrm{f}}$
+ \begin{itemize}
+  \item $E_{\textrm{coh}}^{\textrm{initial conf}}$:
+        cohesive energy per atom of the initial system
+  \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$:
+        cohesive energy per atom of the interstitial system
+  \item N: amount of atoms in the interstitial system
+ \end{itemize}
+ \vspace*{0.2cm}
+ {\color{blue}
+ \[
+ \Rightarrow
+ E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}}
+               -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N
+ \]
+ }
+ Influence of supercell size\\
+ \begin{minipage}{8cm}
+ \includegraphics[width=7.0cm]{si_self_int.ps}
+ \end{minipage}
+ \begin{minipage}{5cm}
+ $E_{\textrm{f}}^{\textrm{110},\,{\color{red}32}\textrm{pc}}=3.38\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{hex},\,54\textrm{pc}}=3.42\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{tet},\,54\textrm{pc}}=3.45\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Questions so far ...\\
+ }
+
+ What configuration to chose for C in Si simulations?
+ \begin{itemize}
+  \item Switch to another method for the XC approximation (GGA, PAW)?
+  \item Reasonable cut-off energy
+  \item Switch off symmetry? (especially for defect simulations)
+  \item $k$-points
+        (Monkhorst? $\Gamma$-point only if cell is large enough?)
+  \item Switch to tetrahedron method or Gaussian smearing ($\sigma$?)
+  \item Size and type of supercell
+        \begin{itemize}
+         \item connected to choice of $k$-point mesh?
+         \item hence also connected to choice of smearing method?
+         \item constraints can only be applied to the lattice vectors!
+        \end{itemize}
+  \item Use of real space projection operators?
+  \item \ldots
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...\\
+ }
+
+ Smearing method for the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
+ and $k$-point mesh
+
+ \begin{itemize}
+  \item $1\times 1\times 1$ Type 0 simulations
+        \begin{itemize}
+         \item No difference in tetrahedron method and Gauss smearing
+         \item ...
+        \end{itemize}
+  \item $1\times 1\times 1$ Type 2 simulations
+        \begin{itemize}
+         \item Again, no difference in tetrahedron method and Gauss smearing
+         \item ...
+        \end{itemize}
+ \end{itemize}
+
+ {\LARGE\bf\color{red}
+ More simulations running ...
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...\\
+ }
+
+ Symmetry (in defect simulations)
+
+ {\LARGE\bf\color{red}
+ Simulations running ...
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...\\
+ }
+
+ Real space projection
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...\\
+ }
+
+ Energy cut-off
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...\\
+ }
+
+ Size and type of supercell
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Not answered (so far) ...\\
+ }
+
+\vspace{1.5cm}
+
+ \LARGE
+ \bf
+ \color{blue}
+
+ \begin{center}
+ Continue\\
+ with\\
+ US LDA?
+ \end{center}
+
+\vspace{1.5cm}
 
 \end{slide}