a bit more ...
[lectures/latex.git] / posic / talks / upb-ua-xc.tex
index a3d1048..7b953ff 100644 (file)
@@ -20,6 +20,8 @@
 \usepackage{pstricks}
 \usepackage{pst-node}
 
+\usepackage{slashbox}
+
 %\usepackage{epic}
 %\usepackage{eepic}
 
@@ -46,6 +48,8 @@
 
 \usepackage{upgreek}
 
+\usepackage{miller}
+
 \begin{document}
 
 \extraslideheight{10in}
 
  \vspace{08pt}
 
- June 2009
+ July 2009
 
 \end{center}
 \end{slide}
@@ -185,6 +189,7 @@ POTIM = 0.1
   \item Supercell: $x_1=(2,0,0),\, x_2=(0,2,0),\, x_3=(0,0,2)$;
         64 atoms (32 pc)
  \end{enumerate}
+ \begin{minipage}{6cm}
  Cohesive energy / Lattice constant:
  \begin{enumerate}
   \item $E_{\textrm{cut-off}}=150\, \textrm{eV}$: 5.955 eV / 5.378 \AA\\
@@ -197,34 +202,2745 @@ POTIM = 0.1
         $E_{\textrm{cut-off}}=300\, \textrm{eV}^{*}$: 5.975 eV / 5.390 \AA
   \item $E_{\textrm{cut-off}}=300\, \textrm{eV}$: 5.977 eV / 5.389 \AA
  \end{enumerate}
+ \end{minipage}
+ \begin{minipage}{7cm}
+ \includegraphics[width=7cm]{si_lc_and_ce.ps}
+ \end{minipage}\\[0.3cm]
+ {\scriptsize
+  $^*$special settings (p. 138, VASP manual):
+  spin polarization, no symmetry, ...
+ }
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Silicon bulk properties
+ }
+
+ \begin{itemize}
+  \item Calculation of cohesive energies for different lattice constants
+  \item No ionic update
+  \item Tetrahedron method with Blöchl corrections for
+        the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
+  \item Supercell 3 (8 atoms, 4 primitive cells)
+ \end{itemize}
+ \vspace*{0.6cm}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ $E_{\textrm{cut-off}}=150$ eV\\
+ \includegraphics[width=6.5cm]{si_lc_fit.ps}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ $E_{\textrm{cut-off}}=250$ eV\\
+ \includegraphics[width=6.5cm]{si_lc_fit_250.ps}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  3C-SiC bulk properties\\[0.2cm]
+ }
+
+ \begin{minipage}{6.5cm}
+ \includegraphics[width=6.5cm]{sic_lc_and_ce2.ps}
+ \end{minipage}
+ \begin{minipage}{6.5cm}
+ \includegraphics[width=6.5cm]{sic_lc_and_ce.ps}
+ \end{minipage}\\[0.3cm]
+ \begin{itemize}
+  \item Supercell 3 (4 primitive cells, 4+4 atoms)
+  \item Error in equilibrium lattice constant: {\color{green} $0.9\,\%$}
+  \item Error in cohesive energy: {\color{red} $31.6\,\%$}
+ \end{itemize}
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  3C-SiC bulk properties\\[0.2cm]
+ }
+
+ \small
+
+ \begin{itemize}
+  \item Calculation of cohesive energies for different lattice constants
+  \item No ionic update
+  \item Tetrahedron method with Blöchl corrections for
+        the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
+ \end{itemize}
+ \vspace*{0.6cm}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ Supercell 3, $4\times 4\times 4$ k-points\\
+ \includegraphics[width=6.5cm]{sic_lc_fit.ps}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ {\color{red}
+  Non-continuous energies\\
+  for $E_{\textrm{cut-off}}<1050\,\textrm{eV}$!\\
+ }
+ \vspace*{0.5cm}
+ {\footnotesize
+ Does this matter in structural optimizaton simulations?
+ \begin{itemize}
+  \item Derivative might be continuous
+  \item Similar lattice constants where derivative equals zero
+ \end{itemize}
+ }
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  3C-SiC bulk properties\\[0.2cm]
+ }
+
+ \footnotesize
+
+\begin{picture}(0,0)(-188,80)
+ %Supercell 1, $3\times 3\times 3$ k-points\\
+ \includegraphics[width=6.5cm]{sic_lc_fit_k3.ps}
+\end{picture}
+
+ \begin{minipage}{6.5cm}
+ \begin{itemize}
+  \item Supercell 1 simulations
+  \item Variation of k-points
+  \item Continuous energies for
+        $E_{\textrm{cut-off}} > 550\,\textrm{eV}$
+  \item Critical $E_{\textrm{cut-off}}$ for
+        different k-points\\
+        depending on supercell?
+ \end{itemize}
+ \end{minipage}\\[1.0cm]
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ \includegraphics[width=6.5cm]{sic_lc_fit_k5.ps}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{6.5cm}
+ \begin{center}
+ \includegraphics[width=6.5cm]{sic_lc_fit_k7.ps}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Cohesive energies
+ }
+
+ {\bf\color{red} From now on ...}
+
+ {\small Energies used: free energy without entropy ($\sigma \rightarrow 0$)}
+
+ \small
+
+ \begin{itemize}
+  \item $E_{\textrm{free,sp}}$:
+        energy of spin polarized free atom
+        \begin{itemize}
+         \item $k$-points: Monkhorst $1\times 1\times 1$
+         \item Symmetry switched off
+         \item Spin polarized calculation
+         \item Interpolation formula according to Vosko Wilk and Nusair
+               for the correlation part of the exchange correlation functional
+         \item Gaussian smearing for the partial occupancies
+               $f(\{\epsilon_{n{\bf k}}\})$
+               ($\sigma=0.05$)
+         \item Magnetic mixing: AMIX = 0.2, BMIX = 0.0001
+         \item Supercell: one atom in cubic
+               $10\times 10\times 10$ \AA$^3$ box
+        \end{itemize}
+        {\color{blue}
+        $E_{\textrm{free,sp}}(\textrm{Si},{\color{green}250}\, \textrm{eV})=
+         -0.70036911\,\textrm{eV}$
+        }\\
+        {\color{blue}
+        $E_{\textrm{free,sp}}(\textrm{Si},{\color{red}650}\, \textrm{eV})=
+         -0.70021403\,\textrm{eV}$
+        },
+        {\color{gray}
+        $E_{\textrm{free,sp}}(\textrm{C},{\color{red}650}\, \textrm{eV})=
+         -1.3535731\,\textrm{eV}$
+        }
+  \item $E$:
+        energy (non-polarized) of system of interest composed of\\
+        n atoms of type N, m atoms of type M, \ldots
+ \end{itemize}
+ \vspace*{0.2cm}
+ {\color{red}
+ \[
+ \Rightarrow
+ E_{\textrm{coh}}=\frac{
+ -\Big(E(N_nM_m\ldots)-nE_{\textrm{free,sp}}(N)-mE_{\textrm{free,sp}}(M)
+ -\ldots\Big)}
+ {n+m+\ldots}
+ \]
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Calculation of the defect formation energy\\
+ }
+
+ \small
  
+ {\color{blue}Method 1} (single species)
+ \begin{itemize}
+  \item $E_{\textrm{coh}}^{\textrm{initial conf}}$:
+        cohesive energy per atom of the initial system
+  \item $E_{\textrm{coh}}^{\textrm{interstitial conf}}$:
+        cohesive energy per atom of the interstitial system
+  \item N: amount of atoms in the interstitial system
+ \end{itemize}
+ \vspace*{0.2cm}
+ {\color{blue}
+ \[
+ \Rightarrow
+ E_{\textrm{f}}=\Big(E_{\textrm{coh}}^{\textrm{interstitial conf}}
+               -E_{\textrm{coh}}^{\textrm{initial conf}}\Big) N
+ \]
+ }\\[0.4cm]
+ {\color{magenta}Method 2} (two and more species)
+ \begin{itemize}
+  \item $E$: energy of the interstitial system
+        (with respect to the ground state of the free atoms!)
+  \item $N_{\text{Si}}$, $N_{\text{C}}$:
+        amount of Si and C atoms
+  \item $\mu_{\text{Si}}$, $\mu_{\text{C}}$:
+        chemical potential (cohesive energy) of Si and C
+ \end{itemize}
+ \vspace*{0.2cm}
+ {\color{magenta}
+ \[
+ \Rightarrow
+ E_{\textrm{f}}=E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}}
+ \]
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Used types of supercells\\
+ }
+
+ \footnotesize
+
+ \begin{minipage}{4.3cm}
+  \includegraphics[width=4cm]{sc_type0.eps}\\[0.3cm]
+  \underline{Type 0}\\[0.2cm]
+  Basis: fcc\\
+  $x_1=(0.5,0.5,0)$\\
+  $x_2=(0,0.5,0.5)$\\
+  $x_3=(0.5,0,0.5)$\\
+  1 primitive cell / 2 atoms
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+  \includegraphics[width=4cm]{sc_type1.eps}\\[0.3cm]
+  \underline{Type 1}\\[0.2cm]
+  Basis:\\
+  $x_1=(0.5,-0.5,0)$\\
+  $x_2=(0.5,0.5,0)$\\
+  $x_3=(0,0,1)$\\
+  2 primitive cells / 4 atoms
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+  \includegraphics[width=4cm]{sc_type2.eps}\\[0.3cm]
+  \underline{Type 2}\\[0.2cm]
+  Basis: sc\\
+  $x_1=(1,0,0)$\\
+  $x_2=(0,1,0)$\\
+  $x_3=(0,0,1)$\\
+  4 primitive cells / 8 atoms
+ \end{minipage}\\[0.4cm]
+
+ {\bf\color{blue}
+ In the following these types of supercells are used and
+ are possibly scaled by integers in the different directions!
+ }
+
 \end{slide}
 
 \begin{slide}
 
  {\large\bf
-  Interstitial configurations
+  Silicon point defects\\
  }
 
- Silicon:
+ \small
+
+ Influence of supercell size\\
+ \begin{minipage}{8cm}
+ \includegraphics[width=7.0cm]{si_self_int.ps}
+ \end{minipage}
+ \begin{minipage}{5cm}
+ $E_{\textrm{f}}^{\hkl<1 1 0>,\,32\textrm{pc}}=3.38\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{tet},\,32\textrm{pc}}=3.41\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{hex},\,32\textrm{pc}}=3.42\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{vac},\,32\textrm{pc}}=3.51\textrm{ eV}$\\\\
+ $E_{\textrm{f}}^{\textrm{hex},\,54\textrm{pc}}=3.42\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{tet},\,54\textrm{pc}}=3.45\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{vac},\,54\textrm{pc}}=3.47\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\hkl<1 1 0>,\,54\textrm{pc}}=3.48\textrm{ eV}$
+ \end{minipage}
+
+ Comparison with literature (PRL 88 235501 (2002)):\\[0.2cm]
+ \begin{minipage}{8cm}
  \begin{itemize}
-  \item Lattice constant:
-  \item Cohesive energy: 5.95 eV, 5.99 eV, 5.96 eV, 5.98 eV
+  \item GGA and LDA
+  \item $E_{\text{cut-off}}=35 / 25\text{ Ry}=476 / 340\text{ eV}$
+  \item 216 atom supercell
+  \item Gamma point only calculations
  \end{itemize}
+ \end{minipage}
+ \begin{minipage}{5cm}
+ $E_{\textrm{f}}^{\hkl<1 1 0>}=3.31 / 2.88\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{hex}}=3.31 / 2.87\textrm{ eV}$\\
+ $E_{\textrm{f}}^{\textrm{vac}}=3.17 / 3.56\textrm{ eV}$
+ \end{minipage}
  
- <100> interstitial:
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Questions so far ...\\
+ }
+
+ What configuration to chose for C in Si simulations?
+ \begin{itemize}
+  \item Switch to another method for the XC approximation (GGA, PAW)?
+  \item Reasonable cut-off energy
+  \item Switch off symmetry? (especially for defect simulations)
+  \item $k$-points
+        (Monkhorst? $\Gamma$-point only if cell is large enough?)
+  \item Switch to tetrahedron method or Gaussian smearing ($\sigma$?)
+  \item Size and type of supercell
+        \begin{itemize}
+         \item connected to choice of $k$-point mesh?
+         \item hence also connected to choice of smearing method?
+         \item constraints can only be applied to the lattice vectors!
+        \end{itemize}
+  \item Use of real space projection operators?
+  \item \ldots
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...\\
+ }
+
+ Smearing method for the partial occupancies $f(\{\epsilon_{n{\bf k}}\})$
+ and $k$-point mesh
+
+ \begin{minipage}{4.4cm}
+  \includegraphics[width=4.4cm]{sic_smear_k.ps}
+ \end{minipage}
+ \begin{minipage}{4.4cm}
+  \includegraphics[width=4.4cm]{c_smear_k.ps}
+ \end{minipage}
+ \begin{minipage}{4.3cm}
+  \includegraphics[width=4.4cm]{si_smear_k.ps}
+ \end{minipage}\\[0.3cm]
+ \begin{itemize}
+  \item Convergence reached at $6\times 6\times 6$ k-point mesh
+  \item No difference between Gauss ($\sigma=0.05$)
+        and tetrahedron smearing method!
+ \end{itemize}
+ \begin{center}
+ $\Downarrow$\\
+ {\color{blue}\bf
+   Gauss ($\sigma=0.05$) smearing
+   and $6\times 6\times 6$ Monkhorst $k$-point mesh used
+ }
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...\\
+ }
+
+ \underline{Symmetry (in defect simulations)}
+
+ \begin{center}
+ {\color{red}No}
+ difference in $1\times 1\times 1$ Type 2 defect calculations\\
+ $\Downarrow$\\
+ Symmetry precission (SYMPREC) small enough\\
+ $\Downarrow$\\
+ {\bf\color{blue}Symmetry switched on}\\
+ \end{center}
+
+ \underline{Real space projection}
+
+ \begin{center}
+ Error in lattice constant of plain Si ($1\times 1\times 1$ Type 2):
+ $0.025\,\%$\\
+ Error in position of the \hkl<1 1 0> interstitital in Si
+ ($1\times 1\times 1$ Type 2):
+ $0.026\,\%$\\
+ $\Downarrow$\\
+ {\bf\color{blue}
+  Real space projection used for 'large supercell' simulations}
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Review (so far) ...
+ }
+
+ Energy cut-off\\
+
+ \begin{center}
+
+ {\small
+ 3C-SiC equilibrium lattice constant and free energy\\ 
+ \includegraphics[width=7cm]{plain_sic_lc.ps}\\
+ $\rightarrow$ Convergence reached at 650 eV\\[0.2cm]
+ }
+
+ $\Downarrow$\\
+
+ {\bf\color{blue}
+  650 eV used as energy cut-off
+ }
+
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Not answered (so far) ...\\
+ }
+
+\vspace{1.5cm}
+
+ \LARGE
+ \bf
+ \color{blue}
+
+ \begin{center}
+ Continue\\
+ with\\
+ US LDA?
+ \end{center}
+
+\vspace{1.5cm}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Final parameter choice
+ }
+
+ \footnotesize
+
+ \underline{Param 1}\\
+ My first choice. Used for more accurate calculations.
+ \begin{itemize}
+  \item $6\times 6 \times 6$ Monkhorst k-point mesh
+  \item $E_{\text{cut-off}}=650\text{ eV}$
+  \item Gaussian smearing ($\sigma=0.05$)
+  \item Use symmetry
+ \end{itemize}
+ \vspace*{0.2cm}
+ \underline{Param 2}\\
+ After talking to the pros!
  \begin{itemize}
-  \item Lattice constant:
-  \item Cohesive energy:
+  \item $\Gamma$-point only
+  \item $E_{\text{cut-off}}=xyz\text{ eV}$
+  \item Gaussian smearing ($\sigma=0.05$)
+  \item Use symmetry
+  \item Real space projection (Auto, Medium) for 'large' simulations
  \end{itemize}
+ \vspace*{0.2cm}
+ {\color{blue}
+  In both parameter sets the ultra soft pseudo potential method
+  as well as the projector augmented wave method is used with both,
+  the LDA and GGA exchange correlation potential!
+ }
+\end{slide}
+
+\begin{slide}
+
+ \footnotesize
+
+ {\large\bf
+  Properties of Si, C and SiC using the new parameters\\
+ }
+
+ $2\times 2\times 2$ Type 2 supercell, Param 1, LDA, US PP\\[0.2cm]
+ \begin{tabular}{|l|l|l|l|}
+ \hline
+  & c-Si & c-C (diamond) & 3C-SiC \\
+ \hline
+ Lattice constant [\AA] & 5.389 & 3.527 & 4.319 \\
+ Expt. [\AA] & 5.429 & 3.567 & 4.359 \\
+ Error [\%] & {\color{green}0.7} & {\color{green}1.1} & {\color{green}0.9} \\
+ \hline
+ Cohesive energy [eV] & -5.277 & -8.812 & -7.318 \\
+ Expt. [eV] & -4.63 & -7.374 & -6.340 \\
+ Error [\%] & {\color{red}14.0} & {\color{red}19.5} & {\color{red}15.4} \\
+ \hline
+ \end{tabular}\\
+
+ \begin{minipage}{10cm}
+ $2\times 2\times 2$ Type 2 supercell, 3C-SiC, Param 1\\[0.2cm]
+ \begin{tabular}{|l|l|l|l|}
+ \hline
+  & {\color{magenta}US PP, GGA} & PAW, LDA & PAW, GGA \\
+ \hline
+ Lattice constant [\AA] & 4.370 & 4.330 & 4.379 \\
+ Error [\%] & {\color{green}0.3} & {\color{green}0.7} & {\color{green}0.5} \\
+ \hline
+ Cohesive energy [eV] & -6.426 & -7.371 & -6.491 \\
+ Error [\%] & {\color{green}1.4} & {\color{red}16.3} & {\color{green}2.4} \\
+ \hline
+ \end{tabular}
+ \end{minipage}
+ \begin{minipage}{3cm}
+ US PP, GGA\\[0.2cm]
+ \begin{tabular}{|l|l|}
+ \hline
+ c-Si & c-C \\
+ \hline
+ 5.455 & 3.567 \\
+ {\color{green}0.5} & {\color{green}0.01} \\
+ \hline
+ -4.591 & -7.703 \\
+ {\color{green}0.8} & {\color{orange}4.5} \\
+ \hline
+ \end{tabular}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Energy cut-off for $\Gamma$-point only caclulations
+ }
+
+ $2\times 2\times 2$ Type 2 supercell, Param 2, US PP, LDA, 3C-SiC\\[0.2cm]
+ \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff.ps}
+ \includegraphics[width=5.5cm]{sic_32pc_gamma_cutoff_lc.ps}\\
+ $\Rightarrow$ Use 300 eV as energy cut-off?\\[0.2cm]
+ $2\times 2\times 2$ Type 2 supercell, Param 2, 300 eV, US PP, GGA\\[0.2cm]
+ \small
+ \begin{minipage}{10cm}
+ \begin{tabular}{|l|l|l|l|}
+ \hline
+  & c-Si & c-C (diamond) & 3C-SiC \\
+ \hline
+ Lattice constant [\AA] & 5.470 & 3.569 & 4.364 \\
+ Error [\%] & {\color{green}0.8} & {\color{green}0.1} & {\color{green}0.1} \\
+ \hline
+ Cohesive energy [eV] & -4.488 & -7.612 & -6.359 \\
+ Error [\%] & {\color{orange}3.1} & {\color{orange}3.2} & {\color{green}0.3} \\
+ \hline
+ \end{tabular}
+ \end{minipage}
+ \begin{minipage}{2cm}
+ {\LARGE
+  ${\color{green}\surd}$
+ }
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  C \hkl<1 0 0> interstitial migration along \hkl<1 1 0>
+  in c-Si (Albe)
+ }
 
- Hexagonal interstitial:
+ \small
+
+ \begin{minipage}[t]{4.2cm}
+ \underline{Starting configuration}\\
+ \includegraphics[width=4cm]{c_100_mig/start.eps}
+ \end{minipage}
+ \begin{minipage}[t]{4.0cm}
+ \vspace*{0.8cm}
+ $\Delta x=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\
+ $\Delta y=\frac{1}{4}a_{\text{Si}}=1.357\text{ \AA}$\\
+ $\Delta z=0.325\text{ \AA}$\\
+ \end{minipage}
+ \begin{minipage}[t]{4.2cm}
+ \underline{{\bf Expected} final configuration}\\
+ \includegraphics[width=4cm]{c_100_mig/final.eps}\\
+ \end{minipage}
+ \begin{minipage}{6cm}
  \begin{itemize}
-  \item Lattice constant:
-  \item Cohesive energy:
+  \item Fix border atoms of the simulation cell
+  \item Constraints and displacement of the C atom:
+        \begin{itemize}
+         \item along {\color{green}\hkl<1 1 0> direction}\\
+               displaced by {\color{green} $\frac{1}{10}(\Delta x,\Delta y)$}
+         \item C atom {\color{red}entirely fixed in position}\\
+               displaced by
+               {\color{red}$\frac{1}{10}(\Delta x,\Delta y,\Delta z)$}
+        \end{itemize}
+  \item Berendsen thermostat applied
  \end{itemize}
+ {\bf\color{blue}Expected configuration not obtained!}
+ \end{minipage}
+ \begin{minipage}{0.5cm}
+ \hfill
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \includegraphics[width=6.0cm]{c_100_110mig_01_albe.ps}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  C \hkl<1 0 0> interstitial migration along \hkl<1 1 0>
+  in c-Si (Albe)
+ }
+
+ \footnotesize
+
+ \begin{minipage}{3.2cm}
+ \includegraphics[width=3cm]{c_100_mig/fixmig_50.eps}
+ \begin{center}
+ 50 \% 
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{3.2cm}
+ \includegraphics[width=3cm]{c_100_mig/fixmig_80.eps}
+ \begin{center}
+ 80 \% 
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{3.2cm}
+ \includegraphics[width=3cm]{c_100_mig/fixmig_90.eps}
+ \begin{center}
+ 90 \% 
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{3.2cm}
+ \includegraphics[width=3cm]{c_100_mig/fixmig_99.eps}
+ \begin{center}
+ 100 \% 
+ \end{center}
+ \end{minipage}
+
+ Open questions ...
+ \begin{enumerate}
+  \item Why is the expected configuration not obtained?
+  \item How to find a migration path preceding to the expected configuration?
+ \end{enumerate}
+
+ Answers ...
+ \begin{enumerate}
+  \item Simple: it is not the right migration path!
+        \begin{itemize}
+         \item (Surrounding) atoms settle into a local minimum configuration
+         \item A possibly existing more favorable configuration is not achieved
+        \end{itemize}
+  \item \begin{itemize}
+         \item Search global minimum in each step (by simulated annealing)\\
+               {\color{red}But:}
+               Loss of the correct energy needed for migration
+         \item Smaller displacements\\
+               A more favorable configuration might be achieved
+               possibly preceding to the expected configuration
+        \end{itemize}
+ \end{enumerate}
 
 \end{slide}
 
+\begin{slide}
+
+ {\large\bf\boldmath
+  C \hkl<1 0 0> interstitial migration along \hkl<1 1 0>
+  in c-Si (Albe)\\
+ }
+
+ Displacement step size decreased to
+ $\frac{1}{100} (\Delta x,\Delta y)$\\[0.2cm]
+
+ \begin{minipage}{7.5cm}
+ Result: (Video \href{../video/c_in_si_smig_albe.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_smig_albe.avi}{$\rhd_{\text{remote url}}$})
+ \begin{itemize}
+  \item Expected final configuration not obtained
+  \item Bonds to neighboured silicon atoms persist
+  \item C and neighboured Si atoms move along the direction of displacement
+  \item Even the bond to the lower left silicon atom persists
+ \end{itemize}
+ {\color{red}
+  Obviously: overestimated bond strength
+ }
+ \end{minipage}
+ \begin{minipage}{5cm}
+  \includegraphics[width=6cm]{c_100_110smig_01_albe.ps}
+ \end{minipage}\\[0.4cm]
+ New approach to find the migration path:\\
+ {\color{blue}
+ Place interstitial carbon atom at the respective coordinates
+ into a perfect c-Si matrix!
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  C \hkl<1 0 0> interstitial migration along \hkl<1 1 0>
+  in c-Si (Albe)
+ }
+
+ {\color{blue}New approach:}\\
+ Place interstitial carbon atom at the respective coordinates
+ into a perfect c-Si matrix!\\
+ {\color{blue}Problem:}\\
+ Too high forces due to the small distance of the C atom to the Si
+ atom sharing the lattice site.\\
+ {\color{blue}Solution:}
+ \begin{itemize}
+  \item {\color{red}Slightly displace the Si atom}
+  (Video \href{../video/c_in_si_pmig_albe.avi}{$\rhd_{\text{local}}$ } $|$
+  \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_albe.avi}{$\rhd_{\text{remote url}}$})
+  \item {\color{green}Immediately quench the system}
+  (Video \href{../video/c_in_si_pqmig_albe.avi}{$\rhd_{\text{local}}$ } $|$
+  \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pqmig_albe.avi}{$\rhd_{\text{remote url}}$})
+ \end{itemize}
+
+ \begin{minipage}{6.5cm}
+ \includegraphics[width=6cm]{c_100_110pqmig_01_albe.ps}
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \begin{itemize}
+  \item Jump in energy corresponds to the abrupt
+        structural change (as seen in the videos)
+  \item Due to the abrupt changes in structure and energy
+        this is {\color{red}not} the correct migration path and energy!?!
+ \end{itemize}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  C \hkl<1 0 0> interstitial migration along \hkl<1 1 0> in c-Si (VASP)
+ }
+
+ \small
+
+ {\color{blue}Method:}
+ \begin{itemize}
+  \item Place interstitial carbon atom at the respective coordinates
+        into perfect c-Si
+  \item \hkl<1 1 0> direction fixed for the C atom
+  \item $4\times 4\times 3$ Type 1, $198+1$ atoms
+  \item Atoms with $x=0$ or $y=0$ or $z=0$ fixed
+ \end{itemize}
+ {\color{blue}Results:}
+ (Video \href{../video/c_in_si_pmig_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_pmig_vasp.avi}{$\rhd_{\text{remote url}}$})\\
+ \begin{minipage}{7cm}
+ \includegraphics[width=7cm]{c_100_110pmig_01_vasp.ps} 
+ \end{minipage}
+ \begin{minipage}{5.5cm}
+ \begin{itemize}
+  \item Characteristics nearly equal to classical calulations
+  \item Approximately half of the classical energy
+        needed for migration
+ \end{itemize}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  C \hkl<1 0 0> interstitial migration along \hkl<1 1 0> in c-Si (VASP)
+ }
+
+ \small
+
+ {\color{blue}Method:}
+ \begin{itemize}
+  \item Continue with atomic positions of the last run
+  \item Displace the C atom in \hkl<1 1 0> direction
+  \item \hkl<1 1 0> direction fixed for the C atom
+  \item $4\times 4\times 3$ Type 1, $198+1$ atoms
+  \item Atoms with $x=0$ or $y=0$ or $z=0$ fixed
+ \end{itemize}
+ {\color{blue}Results:}
+ (Video \href{../video/c_in_si_smig_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_smig_vasp.avi}{$\rhd_{\text{remote url}}$})\\
+ \includegraphics[width=7cm]{c_100_110mig_01_vasp.ps} 
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Again: C \hkl<1 0 0> interstitial migration
+ }
+
+ \small
+
+ {\color{blue}The applied methods:}
+ \begin{enumerate}
+  \item Method
+        \begin{itemize}
+          \item Start in relaxed \hkl<1 0 0> interstitial configuration
+          \item Displace C atom along \hkl<1 1 0> direction
+          \item Relaxation (Berendsen thermostat)
+          \item Continue with configuration of the last run
+        \end{itemize} 
+  \item Method
+        \begin{itemize}
+          \item Place interstitial carbon at the respective coordinates
+                into the perfect Si matrix
+          \item Quench the system
+        \end{itemize} 
+ \end{enumerate}
+ {\color{blue}In both methods:}
+ \begin{itemize} 
+  \item Fixed border atoms
+  \item Applied \hkl<1 1 0> constraint for the C atom
+ \end{itemize}
+ {\color{red}Pitfalls} and {\color{green}refinements}:
+ \begin{itemize}
+  \item {\color{red}Fixed border atoms} $\rightarrow$
+        Relaxation of stress not possible\\
+        $\Rightarrow$
+        {\color{green}Fix only one Si atom} (the one furthermost to the defect)
+  \item {\color{red}\hkl<1 1 0> constraint not sufficient}\\
+        $\Rightarrow$ {\color{green}Apply 11x constraint}
+        (connecting line of initial and final C positions)
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Again: C \hkl<1 0 0> interstitial migration (Albe)
+ }
+
+ Constraint applied by modifying the Velocity Verlet algorithm
+
+ {\color{blue}Results:}
+ (Video \href{../video/c_in_si_fmig_albe.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_fmig_albe.avi}{$\rhd_{\text{remote url}}$})\\
+ \begin{minipage}{6.3cm}
+ \includegraphics[width=6cm]{c_100_110fmig_01_albe.ps}
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \begin{center}
+  Again there are jumps in energy corresponding to abrupt
+  structural changes as seen in the video
+ \end{center}
+ \end{minipage}
+ \begin{itemize}
+  \item Expected final configuration not obtained
+  \item Bonds to neighboured silicon atoms persist
+  \item C and neighboured Si atoms move along the direction of displacement
+  \item Even the bond to the lower left silicon atom persists
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Again: C \hkl<1 0 0> interstitial migration (VASP)
+ }
+
+ Transformation for the Type 2 supercell
+
+ \small
+
+ \begin{minipage}[t]{4.2cm}
+ \underline{Starting configuration}\\
+ \includegraphics[width=3cm]{c_100_mig_vasp/start.eps}
+ \end{minipage}
+ \begin{minipage}[t]{4.0cm}
+ \vspace*{1.0cm}
+ $\Delta x=1.367\text{ \AA}$\\
+ $\Delta y=1.367\text{ \AA}$\\
+ $\Delta z=0.787\text{ \AA}$\\
+ \end{minipage}
+ \begin{minipage}[t]{4.2cm}
+ \underline{{\bf Expected} final configuration}\\
+ \includegraphics[width=3cm]{c_100_mig_vasp/final.eps}\\
+ \end{minipage}
+ \begin{minipage}{6.2cm}
+ Rotation angles:
+ \[
+ \alpha=45^{\circ}
+ \textrm{ , }
+ \beta=\arctan\frac{\Delta z}{\sqrt{2}\Delta x}=22.165^{\circ}
+ \]
+ \end{minipage}
+ \begin{minipage}{6.2cm}
+ Length of migration path:
+ \[
+ l=\sqrt{\Delta x^2+\Delta y^2+\Delta z^2}=2.087\text{ \AA}
+ \]
+ \end{minipage}\\[0.3cm]
+ Transformation of basis:
+ \[
+ T=ABA^{-1}A=AB \textrm{, mit }
+ A=\left(\begin{array}{ccc}
+ \cos\alpha & -\sin\alpha & 0\\
+ \sin\alpha & \cos\alpha & 0\\
+ 0 & 0 & 1
+ \end{array}\right)
+ \textrm{, }
+ B=\left(\begin{array}{ccc}
+ 1 & 0 & 0\\
+ 0 & \cos\beta & \sin\beta \\
+ 0 & -\sin\beta & \cos\beta
+ \end{array}\right)
+ \]
+ Atom coordinates transformed by: $T^{-1}=B^{-1}A^{-1}$
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Again: C \hkl<1 0 0> interstitial migration\\
+ }
+
+ {\color{blue}Reminder:}\\
+ Transformation needed since in VASP constraints can only be applied to
+ the basis vectors!\\
+ {\color{red}Problem:} (stupid me!)\\
+ Transformation of supercell 'destroys' the correct periodicity!\\
+ {\color{green}Solution:}\\
+ Find a supercell with one basis vector forming the correct constraint\\
+ {\color{red}Problem:}\\
+ Hard to find a supercell for the $22.165^{\circ}$ rotation\\
+
+ Another method to {\color{blue}\underline{estimate}} the migration energy:
+ \begin{itemize}
+  \item Assume an intermediate saddle point configuration during migration
+  \item Determine the energy of the saddle point configuration
+  \item Substract the saddle point configuration energy by
+        the energy of the initial (final) defect configuration
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  The C \hkl<1 0 0> defect configuration
+ }
+
+ Needed so often for input configurations ...\\[0.8cm]
+ \begin{minipage}{7.0cm}
+ \includegraphics[width=6.5cm]{100-c-si-db_light.eps}\\
+ Qualitative {\color{red}and} quantitative {\color{red}difference}!
+ \end{minipage}
+ \begin{minipage}{5.5cm}
+ \scriptsize
+ \begin{center}
+ \begin{tabular}{|l|l|l|}
+ \hline
+  & a & b \\
+ \hline
+ \underline{VASP} & & \\
+ fractional & 0.1969 & 0.1211 \\
+ in \AA & 1.08 & 0.66 \\
+ \hline
+ \underline{Albe} & & \\
+ fractional & 0.1547 & 0.1676 \\
+ in \AA & 0.84 & 0.91 \\
+ \hline
+ \end{tabular}\\[0.2cm]
+ {\scriptsize\underline{PC (Vasp)}}
+ \includegraphics[width=6.1cm]{c_100_pc_vasp.ps}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Again: C \hkl<1 0 0> interstitial migration (VASP)
+ }
+
+ $\hkl<0 0 -1> \rightarrow \hkl<0 0 1>$ migration
+ ($3\times 3\times 3$ Type 2):
+
+ \small
+
+ \begin{minipage}[t]{4.1cm}
+ \underline{Starting configuration}\\
+ \includegraphics[height=3.2cm]{c_100_mig_vasp/start.eps}
+ \begin{center}
+ $E_{\text{f}}=3.15 \text{ eV}$
+ \end{center}
+ \end{minipage}
+ \begin{minipage}[t]{4.1cm}
+ \underline{Intermediate configuration}\\
+ \includegraphics[height=3.2cm]{c_100_mig_vasp/00-1_001_im.eps}
+ \begin{center}
+ $E_{\text{f}}=4.41 \text{ eV}$
+ \end{center}
+ \end{minipage}
+ \begin{minipage}[t]{4.1cm}
+ \underline{Final configuration}\\
+ \includegraphics[height=3.2cm]{c_100_mig_vasp/final.eps}
+ \begin{center}
+ $E_{\text{f}}=3.17 \text{ eV}$
+ \end{center}
+ \end{minipage}\\[0.4cm]
+ \[
+ \Rightarrow \Delta E_{\text{f}} = E_{\text{mig}} = 1.26 \text{ eV}
+ \]
+
+ Unexpected \& ({\color{red}more} or {\color{orange}less}) fatal:
+ \begin{itemize}
+  \renewcommand\labelitemi{{\color{orange}$\bullet$}}
+  \item Difference in formation energy (0.02 eV)
+        of the initial and final configuration
+  \renewcommand\labelitemi{{\color{red}$\bullet$}}
+  \item Huge discrepancy (0.3 - 0.4 eV) to the migration barrier
+        of Type 1 (198+1 atoms) calculations
+  \renewcommand\labelitemi{{\color{black}$\bullet$}}
+ \end{itemize}
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Again: C \hkl<1 0 0> interstitial migration (VASP)
+ }
+
+ $\hkl<0 0 -1> \rightarrow \hkl<0 -1 0>$ migration
+ ($3\times 3\times 3$ Type 2):
+
+ \small
+
+ \begin{minipage}[t]{4.1cm}
+ \underline{Starting configuration}\\
+ \includegraphics[height=3.2cm]{c_100_mig_vasp/start.eps}
+ \begin{center}
+ $E_{\text{f}}=3.154 \text{ eV}$
+ \end{center}
+ \end{minipage}
+ \begin{minipage}[t]{4.1cm}
+ \underline{Intermediate configuration}\\
+ in progress ...
+ \begin{center}
+ $E_{\text{f}}=?.?? \text{ eV}$
+ \end{center}
+ \end{minipage}
+ \begin{minipage}[t]{4.1cm}
+ \underline{Final configuration}\\
+ \includegraphics[height=3.2cm]{c_100_mig_vasp/0-10.eps}
+ \begin{center}
+ $E_{\text{f}}=3.157 \text{ eV}$
+ \end{center}
+ \end{minipage}\\[0.4cm]
+ \[
+ \Rightarrow \Delta E_{\text{f}} = E_{\text{mig}} = ?.?? \text{ eV}
+ \]
+
+ \vspace*{0.5cm}
+ {\large\bf
+ Intermediate configuration {\color{red}not found} by now!
+ }
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  C in Si interstitial configurations (VASP)
+ }
+
+ Check of Kohn-Sham eigenvalues\\
+
+ \small
+
+ \begin{minipage}{6cm}
+ \hkl<1 0 0> interstitial\\
+ \end{minipage}
+ \begin{minipage}{6cm}
+ Saddle point configuration\\
+ \end{minipage}
+ \underline{$4\times 4\times 3$ Type 1 - fixed border atoms}\\
+ \begin{minipage}{6cm}
+385:      4.8567  -   2.00000\\
+386:      4.9510  -   2.00000\\
+387:      5.3437  -   0.00000\\
+388:      5.4930  -   0.00000
+ \end{minipage}
+ \begin{minipage}{6cm}
+385:      4.8694  -   2.00000\\
+386: {\color{red}4.9917}  -   1.92603\\
+387: {\color{red}5.1181}  -   0.07397\\
+388:      5.4541  -   0.00000
+ \end{minipage}\\[0.2cm]
+ \underline{$4\times 4\times 3$ Type 1 - no constraints}\\
+ \begin{minipage}{6cm}
+385:      4.8586   -  2.00000\\
+386:      4.9458   -  2.00000\\
+387:      5.3358   -  0.00000\\
+388:      5.4915   -  0.00000
+ \end{minipage}
+ \begin{minipage}{6cm}
+385:      4.8693   -  2.00000\\
+386: {\color{red}4.9879}   -  1.92065\\
+387: {\color{red}5.1120}   -  0.07935\\
+388:      5.4544   -  0.00000
+ \end{minipage}\\[0.2cm]
+ \underline{$3\times 3\times 3$ Type 2 - no constraints}\\
+ \begin{minipage}{6cm}
+433:       4.8054  -   2.00000\\
+434:       4.9027  -   2.00000\\
+435:       5.2543  -   0.00000\\
+436:       5.5718  -   0.00000
+ \end{minipage}
+ \begin{minipage}{6cm}
+433:       4.8160  -   2.00000\\
+434: {\color{green}5.0109}  -   1.00264\\
+435: {\color{green}5.0111}  -   0.99736\\
+436:       5.5364  -   0.00000
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Once again: C \hkl<1 0 0> interstitial migration (VASP)
+ }
+
+ Method:
+ \begin{itemize}
+  \item Start in fully relaxed (assumed) saddle point configuration
+  \item Move towards \hkl<1 0 0> configuration using updated values
+        for $\Delta x$, $\Delta y$ and $\Delta z$ (CRT)
+  \item \hkl<1 1 0> constraints applied, 1 Si atom fixed
+  \item $4\times 4\times 3$ Type 1 supercell
+ \end{itemize}
+
+ Results:
+
+ \begin{minipage}{6.2cm}
+ \includegraphics[width=6.0cm]{c_100_110sp-i_vasp.ps}
+ \end{minipage}
+ \begin{minipage}{6.2cm}
+ \includegraphics[width=6.0cm]{c_100_110sp-i_rc_vasp.ps}
+ \end{minipage}
+
+ Reaction coordinate:
+ $r_{i+1}=r_i+\sum_{\text{atoms j}} \left| r_{j,i+1}-r_{j,i} \right|$
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Investigation of the migration path along \hkl<1 1 0> (VASP)
+ }
+
+ \small
+
+ \underline{Minimum:}\\
+ \begin{minipage}{4cm}
+   \includegraphics[width=3.5cm]{c_100_mig_vasp/110_c-si_split.eps}
+ \end{minipage}
+ \begin{minipage}{8cm}
+   \begin{itemize}
+    \item Starting conf: 35 \% displacement results (1443)
+    \item \hkl<1 1 0> constraint disabled
+   \end{itemize}
+   \begin{center}
+   $\Downarrow$
+   \end{center}
+   \begin{itemize}
+    \item C-Si \hkl<1 1 0> split interstitial
+    \item Stable configuration
+    \item $E_{\text{f}}=4.13\text{ eV}$
+   \end{itemize}
+ \end{minipage}\\[0.1cm]
+
+ \underline{Maximum:}\\
+ \begin{minipage}{6cm}
+   \begin{center}
+   \includegraphics[width=2.3cm]{c_100_mig_vasp/100-110_01.eps}
+   \includegraphics[width=2.3cm]{c_100_mig_vasp/100-110_02.eps}\\
+   20 \% $\rightarrow$ 25 \%\\
+   Breaking of Si-C bond
+   \end{center}
+ \end{minipage}
+ \begin{minipage}{6cm}
+  \includegraphics[width=6.2cm]{c_100_110sp-i_upd_vasp.ps}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Displacing the \hkl<1 1 0> Si-C split along \hkl<1 -1 0> (VASP)
+ }
+
+ \small
+
+ $4\times 4\times 3$ Type 1 supercell
+
+ \underline{Structures:}
+
+ \begin{minipage}[t]{4.1cm}
+  \includegraphics[height=3.0cm]{c_100_mig_vasp/start.eps}\\
+  \hkl<0 0 -1> dumbbell\\
+  $E_{\text{f}}={\color{orange}3.2254}\text{ eV}$
+ \end{minipage}
+ \begin{minipage}[t]{4.1cm}
+  \includegraphics[height=3.0cm]{c_100_mig_vasp/110_c-si_split.eps}\\
+  Assumed \hkl<1 1 0> C-Si split\\
+  $E_{\text{f}}=4.1314\text{ eV}$
+ \end{minipage}
+ \begin{minipage}[t]{4.1cm}
+  \includegraphics[height=3.0cm]{c_100_mig_vasp/110_dis_0-10.eps}\\
+  First guess: \hkl<0 -1 0> dumbbell\\
+  {\color{red}but:} $E_{\text{f}}={\color{orange}2.8924}\text{ eV}$\\
+  Third bond missing!
+ \end{minipage}\\
+
+ \underline{Occupancies:}
+
+ \scriptsize
+
+ \begin{minipage}{4.1cm}
+385:       4.8586  -  2.00000\\
+386:       4.9458  -  2.00000\\
+387:       5.3358  -  0.00000\\
+388:       5.4915  -  0.00000
+\hfill
+ \end{minipage}
+ \begin{minipage}{4.1cm}
+385:       4.7790  -  2.00000\\
+386:       4.8797  -  1.99964\\
+387:       5.1321  -  0.00036\\
+388:       5.4711  -  0.00000
+\hfill
+ \end{minipage}
+ \begin{minipage}{4.1cm}
+385:       4.7670  -  2.00000\\
+386:       4.9190  -  2.00000\\
+387:       5.2886  -  0.00000\\
+388:       5.4849  -  0.00000
+\hfill
+ \end{minipage}\\
+
+\small
+
+ \begin{center}
+ {\color{red}? ! ? ! ? ! ? ! ?}
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  C \hkl<1 0 0> interstitial migration (VASP)
+ }
+
+ \small
+
+ \begin{minipage}{6.2cm}
+ \begin{itemize}
+  \item $3\times 3\times 3$ Type 2 supercell
+  \item \hkl<1 1 0> constraints applied
+        (\href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/sd_rot.patch}{Patch})
+  \item Move from \hkl<1 0 0> towards\\
+        bond centered configuration
+ \end{itemize}
+ \underline{Sd Rot usage (POSCAR):}
+\begin{verbatim}
+cubic diamond                           
+5.480
+ 3.0 0.0 0.0
+ 0.0 3.0 0.0
+ 0.0 0.0 3.0
+216 1
+Transformed selective dynamics
+45.0 0.0
+Direct
+ ...
+\end{verbatim}
+Only works in direct mode!\\
+$z,x'$-axis rotation: $45.0^{\circ}$, $0.0^{\circ}$
+ \end{minipage}
+ \begin{minipage}{6.2cm}
+ \includegraphics[width=5cm]{c_100_110sp-i_2333_vasp.ps}
+ \includegraphics[width=5cm]{c_100_110sp-i_2333_rc_vasp.ps}\\
+ {\color{red}One fixed Si atom not enough!}\\
+ Video: \href{../video/c_in_si_233_110mig_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_in_si_233_110mig_vasp.avi}{$\rhd_{\text{remote url}}$}\\
+ \end{minipage}
+
+ {\color{blue}
+  Next: Migration calculation in 2333 using CRT
+  (\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1> and \hkl<0 -1 0>)
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Defect configurations in $4\times 4\times 3$ Type 1 supercells revisited
+ }
+
+ \footnotesize
+
+ \begin{tabular}{l|p{2.5cm}|p{2.5cm}|p{4cm}|}
+  & \hkl<0 0 -1> interstitial
+  & local minimum\newline
+    \hkl<1 1 0> C-Si split
+  & intermediate configuration\newline
+    (bond centered conf)\\
+ \hline
+ default & $E_{\text{f}}=3.3254\text{ eV}$\newline
+           {\tiny
+           386: 4.9458 - 2.00000\newline
+           387: 5.3358 - 0.00000}
+         & $E_{\text{f}}=4.1314\text{ eV}$\newline
+           {\tiny
+           386: 4.8797 - 1.99964\newline
+           387: 5.1321 - 0.00036}
+         & $E_{\text{f}}=4.2434\text{ eV}$\newline
+           {\tiny
+           386: 4.9879 - 1.92065\newline
+           387: 5.1120 - 0.07935} \\
+ \hline
+ No symmetry & $E_{\text{f}}=3.3154\text{ eV}$\newline
+               {\tiny
+               386: 4.9456 - 2.00000\newline
+               387: 5.3366 - 0.00000}
+             & $E_{\text{f}}=4.1314\text{ eV}$\newline
+               {\tiny
+               386: 4.8798 - 1.99961\newline
+               387: 5.1307 - 0.00039}
+             & $E_{\text{f}}=4.2454\text{ eV}$\newline
+               {\tiny
+               386: 4.9841 - 1.92147\newline
+               387: 5.1085 - 0.07853} \\
+ \hline
+ $+$ spin polarized & $E_{\text{f}}=3.3154\text{ eV}$\newline
+                      {\tiny
+                      {\color{blue}
+                      386: 4.9449 - 1.00000\newline
+                      387: 5.3365 - 0.00000\newline%
+                      }%
+                      {\color{green}%
+                      386: 4.9449 - 1.00000\newline
+                      387: 5.3365 - 0.00000}}
+                    & $E_{\text{f}}={\color{red}4.1314}\text{ eV}$\newline
+                      {\tiny
+                      {\color{blue}
+                      386: 4.8799 - 0.99980\newline
+                      387: 5.1307 - 0.00020\newline%
+                      }%
+                      {\color{green}%
+                      386: 4.8799 - 0.99980\newline
+                      387: 5.1306 - 0.00020}}
+                    & $E_{\text{f}}=4.0254\text{ eV}$\newline
+                      {\tiny
+                      {\color{blue}
+                      387: 4.8581 - 1.00000\newline
+                      388: 5.4662 - 0.00000\newline%
+                      }%
+                      {\color{green}%
+                      385: 4.8620 - 1.00000\newline
+                      386: 5.2951 - 0.00000}} \\
+ \hline
+ $+$ spin difference 2 & $E_{\text{f}}=3.6394\text{ eV}$\newline
+                         {\tiny
+                         {\color{blue}
+                         387: 5.2704 - 0.99891\newline
+                         388: 5.4886 - 0.00095\newline
+                         389: 5.5094 - 0.00011\newline
+                         390: 5.5206 - 0.00003\newline%
+                         }%
+                         {\color{green}%
+                         385: 4.8565 - 0.98603\newline
+                         386: 5.0119 - 0.01397}}
+                       & Relaxation into\newline
+                         bond centered\newline
+                         configuration\newline
+                         $\rightarrow$
+                       & $E_{\text{f}}=4.0254\text{ eV}$\newline
+                         {\tiny
+                         {\color{blue}
+                         387: 4.8578 - 1.00000\newline
+                         388: 5.4661 - 0.00000\newline%
+                         }%
+                         {\color{green}%
+                         385: 4.8618 - 1.00000\newline
+                         386: 5.2950 - 0.00000}} \\
+ \hline
+ \end{tabular}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Defect configurations in $3\times 3\times 3$ Type 2 supercells revisited\\
+ }
+
+ \footnotesize
+
+ \begin{tabular}{l|p{2.5cm}|p{2.5cm}|p{4cm}|}
+  & \hkl<0 0 -1> interstitial
+  & local minimum\newline
+    \hkl<1 1 0> C-Si split
+  & intermediate configuration\newline
+    (bond centered conf)\\
+ \hline
+ default & $E_{\text{f}}=3.15407\text{ eV}$\newline
+           {\tiny
+           434: 4.9027 - 2.00000\newline
+           435: 5.2543 - 0.00000}
+         & $E_{\text{f}}=??\text{ eV}$\newline
+           {\tiny
+           ??\newline
+           ??}
+         & $E_{\text{f}}=4.40907\text{ eV}$\newline
+           {\tiny
+           434: 5.0109 - 1.00264\newline
+           435: 5.0111 - 0.99736}\\
+ \hline
+ No symmetry & $E_{\text{f}}=3.16107\text{ eV}$\newline
+               {\tiny
+               434: 4.9032 - 2.00000\newline
+               435: 5.2547 - 0.00000}
+             & $E_{\text{f}}=??\text{ eV}$\newline
+               {\tiny
+               ??\newline
+               ??}
+             & $E_{\text{f}}=4.41507\text{ eV}$\newline
+               {\tiny
+               434: 5.0113 - 1.00140\newline
+               435: 5.0114 - 0.99860} \\
+ \hline
+ $+$ spin polarized & $E_{\text{f}}=3.16107\text{ eV}$\newline
+                      {\tiny
+                      {\color{blue}
+                      434: 4.9033 - 1.00000\newline
+                      435: 5.2544 - 0.00000\newline%
+                      }%
+                      {\color{green}%
+                      434: 4.9035 - 1.00000\newline
+                      435: 5.2550 - 0.00000}}
+                    & $E_{\text{f}}=??\text{ eV}$\newline
+                      {\tiny
+                      {\color{blue}
+                      ??\newline
+                      ??\newline%
+                      }%
+                      {\color{green}%
+                      ??\newline
+                      ??}}
+                    & $E_{\text{f}}=4.10307\text{ eV}$\newline
+                      {\tiny
+                      {\color{blue}
+                      435: 4.8118 - 1.00000\newline
+                      436: 5.5360 - 0.00000\newline%
+                      }%
+                      {\color{green}%
+                      433: 4.8151 - 1.00000\newline
+                      434: 5.3475 - 0.00000}} \\
+ \hline
+ \end{tabular}
+
+ \normalsize
+
+ \vspace*{0.3cm}
+
+ {\color{blue}Tracer:}\\
+ Smearing of electrons over two or more (degenerated) energy levels\\
+ $\Rightarrow$ use spin polarized calculations!
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Bond centered configuration revisited ($3\times 3\times 3$ Type 2)
+ }
+
+ Spin polarized calculations
+
+ {\small
+ \begin{minipage}[t]{5.8cm}
+ \underline{Kohn-Sham eigenvalues}\\
+  \begin{minipage}{2.8cm}
+  Spin up:\\
+  430: 4.2639 - 1\newline
+  431: 4.7332 - 1\newline
+  432: 4.7354 - 1\newline
+  433: 4.7700 - 1\newline
+  434: 4.8116 - 1\newline
+  435: 4.8118 - 1\newline
+  436: 5.5360 - 0\newline
+  437: 5.5623 - 0
+  \end{minipage}
+  \begin{minipage}{2.8cm}
+  Spin down:\\
+  430: 4.2682 - 1\newline
+  431: 4.7738 - 1\newline
+  432: 4.8150 - 1\newline
+  433: 4.8151 - 1\newline
+  434: 5.3475 - 0\newline
+  435: 5.3476 - 0\newline
+  436: 5.5455 - 0\newline
+  437: 5.5652 - 0
+  \end{minipage}\\[0.3cm]
+ \begin{itemize}
+  \item linear Si-C-Si bond
+  \item Each Si has another 3 Si neighbours
+ \end{itemize}
+ \begin{center}
+ {\color{blue}Spin polarized calculations necessary!}\\[0.3cm]
+ \end{center}
+ {\scriptsize Charge density isosurface of
+              {\color{gray}spin up}, {\color{green}spin down} and
+              the {\color{blue}resulting spin up} electrons.\\
+              Two {\color{yellow} Si} atoms and one {\color{red}C}
+              atom are shown.
+ }
+ \end{minipage}
+ \begin{minipage}[t]{6.5cm}
+ \underline{MO diagram}\\
+  \begin{minipage}[t]{1.2cm}
+  {\color{red}Si}\\
+  {\tiny sp$^3$}\\[0.8cm]
+  \underline{${\color{red}\uparrow}$}
+  \underline{${\color{red}\uparrow}$}
+  \underline{${\color{red}\uparrow}$}
+  \underline{${\color{red}\uparrow}$}\\
+  sp$^3$
+  \end{minipage}
+  \begin{minipage}[t]{1.4cm}
+  \begin{center}
+  {\color{red}M}{\color{blue}O}\\[1.0cm]
+  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
+  $\sigma_{\text{ab}}$\\[0.5cm]
+  \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
+  $\sigma_{\text{b}}$
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.0cm}
+  \begin{center}
+  {\color{blue}C}\\
+  {\tiny sp}\\[0.2cm]
+  \underline{${\color{white}\uparrow\uparrow}$}
+  \underline{${\color{white}\uparrow\uparrow}$}\\
+  2p\\[0.4cm]
+  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
+  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}\\
+  sp
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.4cm}
+  \begin{center}
+  {\color{blue}M}{\color{green}O}\\[1.0cm]
+  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
+  $\sigma_{\text{ab}}$\\[0.5cm]
+  \underline{${\color{green}\uparrow}{\color{blue}\downarrow}$}\\
+  $\sigma_{\text{b}}$
+  \end{center}
+  \end{minipage}
+  \begin{minipage}[t]{1.2cm}
+  \begin{flushright}
+  {\color{green}Si}\\
+  {\tiny sp$^3$}\\[0.8cm]
+  \underline{${\color{green}\uparrow}$}
+  \underline{${\color{green}\uparrow}$}
+  \underline{${\color{green}\uparrow}$}
+  \underline{${\color{green}\uparrow}$}\\
+  sp$^3$
+  \end{flushright}
+  \end{minipage}\\[0.4cm]
+ \begin{flushright}
+ \includegraphics[width=6cm]{c_100_mig_vasp/im_spin_diff.eps}
+ \end{flushright}
+ \end{minipage}
+ }
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  \hkl<0 0 -1> configuration revisited ($3\times 3\times 3$ Type 2)
+ }
+
+ Spin polarized calculations
+
+ {\small
+ \begin{minipage}[t]{5.8cm}
+ \underline{Kohn-Sham eigenvalues}\\
+  \begin{minipage}{2.8cm}
+  Spin up:\\
+  430: 4.3317 - 1\newline
+  431: 4.7418 - 1\newline
+  432: 4.8014 - 1\newline
+  433: 4.8060 - 1\newline
+  434: 4.9033 - 1\newline
+  435: 5.2544 - 0\newline
+  436: 5.5723 - 0\newline
+  437: 5.5848 - 0
+  \end{minipage}
+  \begin{minipage}{2.8cm}
+  Spin down:\\
+  430: 4.3317 - 1\newline
+  431: 4.7420 - 1\newline
+  432: 4.8013 - 1\newline
+  433: 4.8059 - 1\newline
+  434: 4.9035 - 1\newline
+  435: 5.2550 - 0\newline
+  436: 5.5724 - 0\newline
+  437: 5.5846 - 0
+  \end{minipage}
+ \end{minipage}
+ \begin{minipage}[t]{6.5cm}
+ \underline{MO diagram}\\
+  \begin{minipage}[t]{1.2cm}
+  {\color{red}Si}\\
+  {\tiny sp$^2$}\\[0.1cm]
+  \underline{${\color{white}\uparrow}$}\\
+  p\\[0.4cm]
+  \underline{${\color{red}\uparrow\downarrow}$}
+  \underline{${\color{red}\uparrow}{\color{white}\downarrow}$}
+  \underline{${\color{red}\uparrow}{\color{white}\downarrow}$}\\
+  sp$^2$
+  \end{minipage}
+  \begin{minipage}[t]{1.2cm}
+  \begin{flushright}
+  {\color{red}M}\\[1.0cm]
+  \underline{${\color{white}\uparrow}{\color{white}\downarrow}$}\\
+  $\sigma_{\text{ab}}$\\[0.5cm]
+  \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
+  $\sigma_{\text{b}}$
+  \end{flushright}
+  \end{minipage}
+  \begin{minipage}[t]{1.2cm}
+  \begin{flushleft}
+  {\color{blue}O}\\[0.4cm]
+  \underline{${\color{white}\uparrow}{\color{white}\downarrow}$}\\
+  $\pi_{\text{ab}}$\\[0.5cm]
+  \underline{${\color{red}\uparrow}{\color{blue}\downarrow}$}\\
+  $\pi_{\text{b}}$
+  \end{flushleft}
+  \end{minipage}
+  \begin{minipage}[t]{2.0cm}
+  \begin{center}
+  {\color{blue}C}\\
+  {\tiny sp$^2$}\\[0.5cm]
+  \underline{${\color{white}\uparrow\uparrow}$}\\
+  p\\[0.4cm]
+  \underline{${\color{blue}\uparrow}{\color{blue}\downarrow}$}
+  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}
+  \underline{${\color{blue}\uparrow}{\color{white}\downarrow}$}\\
+  sp$^2$
+  \end{center}
+  \end{minipage}
+ \end{minipage}
+ }
+
+ \vspace*{0.4cm}
+
+ \begin{itemize}
+  \item Si-C double bond
+  \item Si and C atom have another 2 Si neighbours
+ \end{itemize}
+ \begin{center}
+ {\color{blue}Spin polarized calculations {\color{red}not} necessary!}
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Kohn-Sham levels visualized
+ }
+
+ \begin{minipage}{6cm}
+ \underline{\hkl<0 0 -1> configuration}
+ \begin{center}
+ \includegraphics[height=8cm]{c_100_mig_vasp/100_ksl.ps}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \underline{Saddle point configuration}
+ \begin{center}
+ \includegraphics[height=8cm]{c_100_mig_vasp/im_ksl.ps}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Saddle point configuration check
+ }
+
+ Simulations:
+ \begin{itemize}
+  \item Displacing the C atom in the BC configuration
+        \begin{itemize}
+         \item in \hkl<1 -1 0> direction\\
+               $(0.1240, 0.1240, 0.0409) \rightarrow
+                (0.1340, 0.1140, 0.0409)$
+         \item in \hkl<1 0 0> direction\\
+               $(0.1240, 0.1240, 0.0409) \rightarrow
+                (0.1440, 0.1240, 0.0409)$
+        \end{itemize}
+  \item Full relaxation of the configuration
+ \end{itemize}
+
+ Results:
+ \begin{itemize}
+  \item Both displacement simulations relax to
+        the BC configuration
+  \item Obviously the second derivative with respect to the
+        migration direction is also positive
+ \end{itemize}
+
+ \begin{center}
+ $\Downarrow$\\
+ Bond centered configuration is a
+ {\color{blue}real local minimum}
+ and  {\color{red}not} a saddle point configuration
+ \end{center}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  New default parameter set\\[1cm]
+ }
+
+ Since some defect configurations need spin polarized calculations ...\\[1cm]
+
+ from now on the default parameter set\\
+ {\bf\color{blue}
+ $+$ no symmetry\\
+ $+$ spin polarized\\
+ }
+ \ldots is used!\\[1cm]
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  BC to \hkl<0 0 -1> migration
+   in the $3\times 3\times 3$ Type 2 supercell
+ }
+
+ \begin{minipage}{6cm}
+ Method:
+ \begin{itemize}
+  \item Starting configuration:\\
+        C bond centered
+  \item CRT towards \hkl<0 0 -1> configuration
+  \item Spin polarized calculations
+ \end{itemize}
+ Results:\\
+ Video \href{../video/c_im_00-1_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_im_00-1_vasp.avi}{$\rhd_{\text{remote url}}$}
+ \begin{itemize}
+  \item Still abrupt changes in configuration and energy 
+  \item Migration barrier $>$ 1 eV
+ \end{itemize} 
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \includegraphics[width=6cm]{c_im_001_mig_vasp.ps}
+ \includegraphics[width=6cm]{c_im_001_mig_rc_vasp.ps}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  \hkl<0 0 -1> to \hkl<0 -1 0> migration
+  in the $3\times 3\times 3$ Type 2 supercell
+ }
+
+ \includegraphics[width=6cm]{c_00-1_0-10_mig_vasp.ps}
+ \includegraphics[width=6cm]{c_00-1_0-10_mig_dis_vasp.ps}
+
+ Calculations without spin:\\
+ Video \href{../video/c_00-1_0-10_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/c_00-1_0-10_vasp.avi}{$\rhd_{\text{remote url}}$} ... WAAAAH!!!
+ \begin{itemize}
+  \item Refined starting from 70\% due to
+        abrubt jumps in energy and configuration 
+  \item Displacement from 80 to 85\% disastrous
+  \item Subsequent displacements too large
+ \end{itemize}
+
+ Waiting for spin polarized calculations before deciding what to do ...
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  C \hkl<1 0 0> migration - yet another method!
+ }
+
+ {\color{red}Problem:}
+
+ Abrubt changes in atomic configurations (and energy)
+ in consecutive steps.
+ In addition - sometimes - the final configuration is not obtained!
+
+ {\color{blue}New method:}
+
+ Displace {\color{red}all} atoms towards the final configuration
+ and apply corresponding constraints for each atom.
+
+ Usage: 
+ (\href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/sd_rot_all-atoms.patch}{Patch})
+
+\footnotesize 
+
+\begin{verbatim}
+cubic diamond                           
+   5.48000000000000     
+     2.9909698580839312    0.0039546630279804   -0.0039658085666586
+     0.0039548953566878    2.9909698596656376   -0.0039660323646892
+    -0.0039680658132861   -0.0039674231313905    2.9909994291263242
+ 216   1
+Transformed selective dynamics
+Direct
+ 0.994174 0.994174 -0.000408732 T F T 45 36.5145
+ 0.182792 0.182792 0.981597 T F T -135 -5.95043
+ ...
+ 0.119896 0.119896 0.0385525 T F T -135 21.8036
+\end{verbatim}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  BC to \hkl<0 0 -1> migration (all atoms CRT)
+ }
+
+ \includegraphics[width=6cm]{im_00-1_nosym_sp_fullct.ps}
+ \includegraphics[width=6cm]{im_00-1_nosym_sp_fullct_rc.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  \hkl<0 0 -1> to \hkl<0 -1 0> migration (all atoms CRT)
+ }
+
+ \includegraphics[width=6cm]{00-1_0-10_nosym_sp_fullct.ps}
+ \includegraphics[width=6cm]{00-1_0-10_nosym_sp_fullct_rc.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  \hkl<0 0 -1> to \hkl<0 -1 0> migration in place (all atoms CRT)
+ }
+
+ \includegraphics[width=6cm]{00-1_ip0-10_nosym_sp_fullct.ps}
+ \includegraphics[width=6cm]{00-1_ip0-10_nosym_sp_fullct_rc.ps}
+
+ in progress ...
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ TODO: introduce some Si self-interstitials and C interstitials before\\
+ BUT: Concentrate on 100 C interstitial combinations and 100 C + vacancy\\
+ Agglomeration of 100 defects energetically favorable?
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Silicon point defects
+ }
+
+ \begin{minipage}{3.2cm}
+ \underline{Vacancy}
+ \begin{itemize}
+  \item $E_{\text{f}}=3.63\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{si_pd_vasp/vac_2333.eps}\\
+ \underline{\hkl<1 1 0> interstitial}
+ \begin{itemize}
+  \item $E_{\text{f}}=3.39\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{si_pd_vasp/110_2333.eps}
+ \end{minipage}
+ \begin{minipage}{4.5cm}
+ \begin{center}
+ \includegraphics[height=8cm]{si_pd_vasp/vac_2333_ksl.ps}\\
+ {\scriptsize Vacancy}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{4.5cm}
+ \begin{center}
+ \includegraphics[height=8cm]{si_pd_vasp/110_2333_ksl.ps}
+ {\scriptsize \hkl<1 1 0> interstitial}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Silicon point defects
+ }
+
+ \begin{minipage}{3.1cm}
+ \underline{Hexagonal}
+ \begin{itemize}
+  \item $E_{\text{f}}=3.42\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{si_pd_vasp/hex_2333.eps}\\
+ \underline{Tetrahedral}
+ \begin{itemize}
+  \item $E_{\text{f}}=3.77\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{si_pd_vasp/tet_2333.eps}
+ \end{minipage}
+ \begin{minipage}{3.7cm}
+ \begin{center}
+ \includegraphics[height=8cm]{si_pd_vasp/hex_2333_ksl.ps}\\
+ {\scriptsize Hexagonal}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{3.7cm}
+ \begin{center}
+ \includegraphics[height=8cm]{si_pd_vasp/tet_2333_ksl.ps}
+ {\scriptsize Tetrahedral}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}[c]{0.1cm}
+ \hfill
+ \end{minipage}
+ \begin{minipage}[c]{1.9cm}
+{\tiny
+\underline{Energy - Occup.}\\
+5.5063 - 0.32840\\
+5.5064 - 0.32793\\
+5.5064 - 0.32764\\
+5.5777 - 0.00691\\
+5.5777 - 0.00691\\
+5.6031 - 0.00074\\
+5.6031 - 0.00074\\
+5.6035 - 0.00071\\
+5.6357 - 0.00002\\
+5.6453 - 0.00001\\
+5.6453 - 0.00001
+}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Silicon point defects
+ }
+
+ \begin{minipage}{3.1cm}
+ \underline{\hkl<1 0 0> interstitial}
+ \begin{itemize}
+  \item $E_{\text{f}}=4.41\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{si_pd_vasp/100_2333.eps}\\
+ \end{minipage}
+ \begin{minipage}{3.7cm}
+ \begin{center}
+ \includegraphics[height=8cm]{si_pd_vasp/100_2333_ksl.ps}\\
+ {\scriptsize \hkl<1 0 0> interstitial}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Carbon point defects in silicon
+ }
+ \begin{minipage}{3.2cm}
+ \underline{C substitutional}
+ \begin{itemize}
+  \item $E_{\text{f}}=1.39\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{c_pd_vasp/sub_2333.eps}\\
+ \underline{\hkl<1 0 0> interstitial}
+ \begin{itemize}
+  \item $E_{\text{f}}=3.15\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{c_pd_vasp/100_2333.eps}
+ \end{minipage}
+ \begin{minipage}{4.5cm}
+ \begin{center}
+ \includegraphics[height=8cm]{c_pd_vasp/sub_2333_ksl.ps}\\
+ {\scriptsize C substitutional}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{4.5cm}
+ \begin{center}
+ \includegraphics[height=8cm]{c_pd_vasp/100_2333_ksl.ps}
+ {\scriptsize \hkl<1 0 0> interstitial}
+ \end{center}
+ \end{minipage}
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Carbon point defects in silicon
+ }
+ \begin{minipage}{3.2cm}
+ \underline{C bond centered}
+ \begin{itemize}
+  \item $E_{\text{f}}=4.10\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{c_pd_vasp/bc_2333.eps}
+ \underline{\hkl<1 1 0> interstitial}
+ \begin{itemize}
+  \item $E_{\text{f}}=3.60\text{ eV}$
+ \end{itemize}
+ \includegraphics[width=3cm]{c_pd_vasp/110_2333.eps}
+ \end{minipage}
+ \begin{minipage}{4.5cm}
+ \begin{center}
+ \includegraphics[height=8cm]{c_pd_vasp/110_2333_ksl.ps}
+ {\scriptsize \hkl<1 1 0> interstitial}
+ \end{center}
+ \end{minipage}
+ \begin{minipage}{4.5cm}
+ \begin{center}
+ \includegraphics[height=8cm]{c_pd_vasp/bc_2333_ksl.ps}
+ {\scriptsize C bond centered}
+ \end{center}
+ \end{minipage}
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Carbon point defects in silicon
+ }
+
+ The hexagonal and tetrahedral C configurations both relax into the
+ \hkl<0 0 1> interstitial configuration!
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \begin{itemize}
+  \item Supercell: $3\times 3\times 3$ Type 2
+  \item Starting configuration: \hkl<0 0 -1> C-Si interstitial
+        ($E_{\text{f}}=3.15\text{ eV}$)
+  \item Energies: $E_{\text{f}}$ of the interstitial combinations in eV
+ \end{itemize}
+
+ \underline{Along \hkl<1 1 0>:}
+
+ \begin{tabular}{|l|p{2.0cm}|p{1.8cm}|p{1.8cm}|p{1.8cm}|}
+ \hline
+  {\scriptsize
+  \backslashbox{2nd interstitial}{Distance $[\frac{a}{4}]$}
+  }
+  & \hkl<1 1 -1> & \hkl<2 2 0> & \hkl<3 3 -1> & \hkl<4 4 0>\\
+ \hline
+ \hkl<0 0 -1> & 6.23\newline {\color{blue}6.23514} 
+              & 4.65\newline {\color{blue}4.65014} 
+              & 5.97\newline {\color{blue}5.97314}
+              & 6.45\newline {\color{blue}6.45714} \\
+ \hline
+ \hkl<0 0 1> & 6.64\newline {\color{blue}6.65114} 
+             & 4.78\newline {\color{blue}4.78314} 
+             & 6.53\newline {\color{blue}6.53614}
+             & 6.18\newline {\color{blue}6.18914} \\
+ \hline
+ \hkl<1 0 0>, \hkl<0 1 0> & 4.06\newline alkmene
+                          & 4.93
+                          & 5.72
+                          & 6.00\\
+ \hline
+ \hkl<-1 0 0>, \hkl<0 -1 0> & 3.92 & 4.43 & 6.02 & 6.02 \\
+ \hline
+ Vacancy & 1.39 ($\rightarrow\text{ C}_{\text{S}}$)& 5.81 & 5.47 & 6.50 \\
+ \hline
+ \end{tabular}
+
+ Spin polarized and {\color{blue}non spin polarized} results
+\end{slide}
+
+\begin{slide}
+
+ \begin{minipage}{5cm}
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \scriptsize
+
+ Initial insterstital at: $\frac{1}{4}\hkl<1 1 1>$
+
+ Relative silicon neighbour positions:
+ \begin{enumerate}
+  \item The dumbbell Si
+  \item $\frac{1}{4}\hkl<1 1 -1>$, $\frac{1}{4}\hkl<-1 -1 -1>$
+  \item $\frac{1}{2}\hkl<1 0 -1>$, $\frac{1}{2}\hkl<0 1 -1>$,
+        $\frac{1}{2}\hkl<0 -1 -1>$, $\frac{1}{2}\hkl<-1 0 -1>$
+  \item $\frac{1}{4}\hkl<1 -1 1>$, $\frac{1}{4}\hkl<-1 1 1>$
+  \item $\frac{1}{4}\hkl<-1 1 -3>$, $\frac{1}{4}\hkl<1 -1 -3>$
+  \item $\frac{1}{2}\hkl<-1 -1 0>$, $\frac{1}{2}\hkl<1 1 0>$
+  \item $\frac{1}{2}\hkl<1 -1 0>$, $\frac{1}{2}\hkl<-1 1 0>$
+  \item $\frac{1}{4}\hkl<-1 3 -1>$, $\frac{1}{4}\hkl<1 -3 -1>$,
+        $\frac{1}{4}\hkl<3 -1 -1>$. $\frac{1}{4}\hkl<-3 1 -1>$
+  \item $\hkl<0 0 -1>$
+  \item $\frac{1}{2}\hkl<1 0 1>$, $\frac{1}{2}\hkl<0 1 1>$,
+        $\frac{1}{2}\hkl<0 -1 1>$, $\frac{1}{2}\hkl<-1 0 1>$
+  \item $\frac{1}{4}\hkl<-1 -3 1>$, $\frac{1}{4}\hkl<-3 -1 1>$,
+        $\frac{1}{4}\hkl<1 3 1>$, $\frac{1}{4}\hkl<3 1 1>$
+  \item $\frac{1}{4}\hkl<1 3 -3>$, $\frac{1}{4}\hkl<3 1 -3>$,
+        $\frac{1}{4}\hkl<-1 -3 -3>$, $\frac{1}{4}\hkl<-3 -1 -3>$
+  \item $\hkl<1 0 0>$, $\hkl<0 1 0>$, $\hkl<-1 0 0>$, $\hkl<0 -1 0>$
+  \item $\frac{1}{4}\hkl<1 1 3>$, $\frac{1}{4}\hkl<-1 -1 3>$
+  \item $\frac{1}{4}\hkl<3 3 -1>$, $\frac{1}{4}\hkl<-3 -3 -1>$
+  \item $\frac{1}{2}\hkl<1 1 -2>$, $\frac{1}{2}\hkl<-1 -1 -2>$,
+  \item $\frac{1}{2}\hkl<1 -1 -2>$, $\frac{1}{2}\hkl<-1 1 -2>$
+ \end{enumerate}
+ One of a kind\\
+ {\color{red}Two of a kind}\\
+ {\color{blue}Four of a kind}
+ \end{minipage}
+ \begin{minipage}{6cm}
+ \includegraphics[width=8cm]{c_100_next_neighbours_02.eps}
+ \begin{center}
+ \includegraphics[width=5cm]{c_100_res_bonds_vasp.ps}
+ \end{center}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ Initial C \hkl<0 0 -1> insterstital at: $\frac{1}{4}\hkl<1 1 1>$
+
+ {\footnotesize
+ \begin{tabular}{|l|l|l|l|l|l|}
+ \hline
+ & 2 & 3 & 4 & 5 & 6 \\
+ \hline
+C \hkl<0 0 -1> & 6.23/-0.08 & 5.16/-1.15 & 6.23/-0.08 & 6.35/0.04 & 4.65/-1.66\\
+ \hline
+C \hkl<0 0 1> & 6.64/0.34 & 6.31/0.01 & 4.26/-2.05 & 6.57/0.26 & 4.78/-1.53 \\
+ \hline
+C \hkl<1 0 0> & 4.06/-2.25 & 6.13/-0.17 & 6.21/-0.10 & 6.03/-0.27 & 4.93/-1.38 \\
+ \hline
+C \hkl<-1 0 0> & \hkl<0 -1 0> & 4.41/-1.90 & 4.06/-2.25 & 6.19/-0.12 & 4.43/-1.88 \\
+ \hline
+C \hkl<0 1 0> & \hkl<1 0 0> & 5.95/-0.36 & \hkl<-1 0 0> & \hkl<-1 0 0> & \hkl<1 0 0> \\
+ \hline
+C \hkl<0 -1 0> & 3.92/-2.39 & 4.15/-2.16 & \hkl<1 0 0> & \hkl<1 0 0> & \hkl <-1 0 0> \\
+ \hline
+Vacancy & 1.39/-5.39 ($\rightarrow\text{ C}_{\text{S}}$) & 6.19/-0.59 & 3.65/-3.14 & 6.24/-0.54 & 6.50/-0.50 \\
+ \hline
+C$_{\text{sub}}$ & 4.80/0.26 & 4.03/-0.51 & 3.62/-0.93 & 4.39/-0.15 & 5.03/0.49 \\
+\hline
+ \end{tabular}\\[0.2cm]
+ }
+
+ \begin{minipage}{8cm}
+ Energies: $x/y$\\
+ $x$: Defect formation energy of the complex\\
+ $y$:
+  $E_{\text{f}}^{\text{defect combination}}-
+   E_{\text{f}}^{\text{isolated C \hkl<0 0 -1>}}-
+   E_{\text{f}}^{\text{isolated 2nd defect}}
+  $\\[0.3cm]
+  {\color{blue}
+  If $y<0$ $\rightarrow$ favored compared to far-off isolated defects
+  }
+ \end{minipage}
+ \begin{minipage}{4.5cm}
+ \includegraphics[width=5.0cm]{00-1dc/energy.ps}
+ \end{minipage}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ {\color{blue}
+ For defect position 3 and 5 (image 2 and 4) the unit cell is translated by
+ $\frac{a}{2} \hkl<0 -1 -1>$
+ }
+
+ Type of second defect: \hkl<0 0 -1>
+
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/00-1_1.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/00-1_3.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/00-1_4.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/00-1_5.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/00-1_6.eps}
+ \end{minipage}
+
+ \includegraphics[width=5.0cm]{00-1dc/energy_00x.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ {\color{blue}
+ For defect position 3 and 5 (image 2 and 4) the unit cell is translated by
+ $\frac{a}{2} \hkl<0 -1 -1>$
+ }
+
+ Type of second defect: \hkl<0 0 1>
+
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/001_1.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/001_3.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/001_4.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/001_5.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/001_6.eps}
+ \end{minipage}
+
+ \includegraphics[width=5.0cm]{00-1dc/energy_001.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ {\color{blue}
+ For defect position 3 and 5 (image 2 and 4) the unit cell is translated by
+ $\frac{a}{2} \hkl<0 -1 -1>$
+ }
+
+ Type of second defect: \hkl<1 0 0> or equivalent one
+
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_1.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_3.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_4.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_5.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_6.eps}
+ \end{minipage}
+
+ \includegraphics[width=5.0cm]{00-1dc/energy_100.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ {\color{blue}
+ For defect position 3 and 5 (image 2 and 4) the unit cell is translated by
+ $\frac{a}{2} \hkl<0 -1 -1>$
+ }
+
+
+ Type of second defect: \hkl<-1 0 0> or equivalent one
+
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/0-10_1.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/-100_3.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/-100_4.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/-100_5.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/0-10_6.eps}
+ \end{minipage}
+
+ \includegraphics[width=5.0cm]{00-1dc/energy_x00.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ {\color{blue}
+ For defect position 3 and 5 (image 2 and 4) the unit cell is translated by
+ $\frac{a}{2} \hkl<0 -1 -1>$
+ }
+
+ Type of second defect: \hkl<0 1 0> or equivalent one
+
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_1.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/010_3.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/-100_4.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/-100_5.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_6.eps}
+ \end{minipage}
+
+ \includegraphics[width=5.0cm]{00-1dc/energy_010.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ {\color{blue}
+ For defect position 3 and 5 (image 2 and 4) the unit cell is translated by
+ $\frac{a}{2} \hkl<0 -1 -1>$
+ }
+
+
+ Type of second defect: \hkl<0 -1 0> or equivalent one
+
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/0-10_1.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/0-10_3.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_4.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/100_5.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/0-10_6.eps}
+ \end{minipage}
+
+ \includegraphics[width=5.0cm]{00-1dc/energy_0x0.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ {\color{blue}
+ For defect position 3 and 5 (image 2 and 4) the unit cell is translated by
+ $\frac{a}{2} \hkl<0 -1 -1>$
+ }
+
+ Type of second defect: Vacancy
+
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/vac_1.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/vac_3.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/vac_4.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/vac_5.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/vac_6.eps}
+ \end{minipage}
+
+ \includegraphics[width=5.0cm]{00-1dc/energy_vac.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf\boldmath
+  Combination of defects
+ }
+
+ \small
+
+ {\color{blue}
+ For defect position 3 and 5 (image 2 and 4) the unit cell is translated by
+ $\frac{a}{2} \hkl<0 -1 -1>$
+ }
+
+ Type of second defect: C$_{\text{sub}}$
+
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/csub_1.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/csub_3.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/csub_4.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/csub_5.eps}
+ \end{minipage}
+ \begin{minipage}{2.5cm}
+ \includegraphics[width=2.5cm]{00-1dc/csub_6.eps}
+ \end{minipage}
+
+ \includegraphics[width=5.0cm]{00-1dc/energy_csub.ps}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Brainstorming: Point defects in Si (as grown and as implanted)
+ }
+
+ \small
+
+ Supercell size: $2$ -- $2000 \cdot 10^{-21}\text{ cm}^3$
+
+ \underline{After crystal growth}
+ \begin{itemize}
+  \item Si point defects at $450\, ^{\circ}\text{C}$
+        \begin{itemize}
+         \item Interstitials:
+         \item Vacancies: 
+        \end{itemize}
+  \item C impurities: $10^{17}\text{ cm}^{-3}$\\
+        $\Rightarrow$ $10^{-4}$ -- $10^{-1}$ per sc
+        $\rightarrow$ neglected in simulations
+ \end{itemize}
+
+ \underline{After/during implantation}
+ \begin{itemize}
+  \item Si point defects\\
+        $E_{\text{d}}^{\text{av}}=35\text{ eV}$,
+        $D_{\text{imp}}=1\text{ -- }4 \cdot 10^{17}\text{ cm }^{-2}$,
+        $d_{\text{sc}}=3\text{ -- }30\cdot 4.38\text { \AA}$,
+        $A=(3\text{ -- }30\text{ \AA})^2$,\\
+        Amount of collisions with $\Delta E > E_{\text{d}}$
+        in depth region $[h,h+d_{\text{sc}}]$: $n=$ .. (SRIM)\\
+        $\Rightarrow N_{\text{FP}}=nAD$
+  \item C point defects
+        \begin{itemize}
+         \item Substitutional C: ...
+         \item Intesrtitial C: ...
+        \end{itemize}
+ \end{itemize}
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Reminder (just for me to keep in mind ...)
+ }
+
+ \small
+
+ \underline{Volume of the MD cell}
+ \begin{itemize}
+  \item $T=450, 900, 1400\text{ K}$ - (no melting, N\underline{V}T!)
+  \item $\alpha=2.0 \cdot 10^{-6}\text{ K}^{-1}$
+  \item $a = a_0(1+\alpha \Delta T)$
+  \item Plain Si$(T=0)$: $a_0=5.4575\text{ \AA}$
+        $\rightarrow a(900\text{ K})=5.4674\text{ \AA}$
+  \item C \hkl<1 0 0> in Si$(T=0)$: $a_0^{\text{avg}}=
+        \frac{1}{3}(a_0^x+a_0^y+a_0^z)=5.4605\text{ \AA}$
+        $\rightarrow a(900\text{ K})=5.4704{ \AA}$
+ \end{itemize}
+ Used in first 900 K simulations: 5.4705 \AA\\
+ BUT: Better use plain Si lattice constant! (only local distortions)\\
+ $\Rightarrow a(1400\text{ K})=5.4728\text{ \AA}$
+
+ \underline{Zero total momentum simulations}
+ \begin{itemize}
+  \item If C is randomly inserted there is a net total momentum
+  \item No correction in the temperature control routine of VASP?
+  \item Relax a Si:C configuration first
+        (at T=0, no volume relaxation, scaled volume)
+  \item Use this configuration as the MD initial configuration
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Molecular dynamics simulations (VASP)
+ }
+
+ 2 C atoms in $2\times 2\times 2$ Type 2 supercell at $450\,^{\circ}\text{C}$
+
+ \small
+
+ \begin{minipage}{7.6cm}
+ Radial distribution\\
+ \includegraphics[width=7.6cm]{md_02c_2222si_pc.ps}
+ \end{minipage}
+ \begin{minipage}{5.0cm}
+ \begin{center}
+ PC average from\\
+ $t_1=50$ ps to $t_2=50.93$ ps
+ \end{center}
+ \end{minipage}
+ Diffusion:
+ \begin{itemize}
+  \item $<(x(t)-x(0))^2>$ hard to determine due to missing info of
+        boundary crossings
+  \item No jumps recognized in the
+ Video \href{../video/md_02c_2222si_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/md_02c_2222si_vasp.avi}{$\rhd_{\text{remote url}}$}
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Molecular dynamics simulations (VASP)
+ }
+
+ 10 C atoms in $3\times 3\times 3$ Type 2 supercell at $450\,^{\circ}\text{C}$
+
+ \small
+
+ \begin{minipage}{7.2cm}
+ Radial distribution (PC averaged over 1 ps)\\
+ \includegraphics[width=7.0cm]{md_10c_2333si_pc_vasp.ps}
+ \end{minipage}
+ \begin{minipage}{5.0cm}
+ \includegraphics[width=6.0cm]{md_10c_2333si_pcc_vasp.ps}
+ \end{minipage}
+ Diffusion:
+ (Video \href{../video/md_10c_2333si_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/md_10c_2333si_vasp.avi}{$\rhd_{\text{remote url}}$})
+ \begin{itemize}
+  \item $<(x(t)-x(0))^2>$ hard to determine due to missing info of
+        boundary crossings
+  \item Agglomeration of C? (Video)
+ \end{itemize}
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Molecular dynamics simulations (VASP)
+ }
+
+ 1 C atom in $3\times 3\times 3$ Type 2 supercell at $900\,^{\circ}\text{C}$\\\\
+
+ Video \href{../video/md_01c_2333si_900_vasp.avi}{$\rhd_{\text{local}}$ } $|$
+ \href{http://www.physik.uni-augsburg.de/~zirkelfr/download/posic/md_01c_2333si_900_vasp.avi}{$\rhd_{\text{remote url}}$}\\\\
+
+ \begin{itemize}
+ \item Inserted C becomes a \hkl<0 0 1> interstitial after a few femto-seconds
+ \item  {\color{red}There is a non-zero total momentum!}
+ \item Migration of the C atom not observed
+ \item C \hkl<0 0 1> configuration persists
+ \end{itemize}
+
+ Problem: Thermostat doesn't do momentum correction
+
+ TODO: Start MD using relaxed (at zero temperature) initial configuration
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Molecular dynamics simulations (VASP)
+ }
+
+ 10 C atoms in $3\times 3\times 3$ Type 2 supercell at $900\,^{\circ}\text{C}$
+
+ in progress ...
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  Density Functional Theory
+ }
+
+ Hohenberg-Kohn theorem
+
+ \small
+
+\end{slide}
+
+\begin{slide}
+
+ {\large\bf
+  More theory ...
+ }
+
+ Transition state theory\\
+ ART,NEB ...
+
+ Group theory
+
+ \small
+
+\end{slide}
+
+\end{document}
 \end{document}