lots of punctuation stuff
[lectures/latex.git] / posic / thesis / basics.tex
index 8d57d43..04542e2 100644 (file)
@@ -400,7 +400,7 @@ Clearly, this directs attention to the functional, which now contains the costs
 As discussed above, the HK and KS formulations are exact and so far no approximations except the adiabatic approximation entered the theory.
 However, to make concrete use of the theory, effective approximations for the exchange and correlation energy functional $E_{\text{xc}}[n(\vec{r})]$ are required.
 
-Most simple and at the same time remarkably useful is the approximation of $E_{\text{xc}}[n(\vec{r})]$ by a function of the local density~\cite{kohn65}
+Most simple and at the same time remarkably useful, is the approximation of $E_{\text{xc}}[n(\vec{r})]$ by a function of the local density~\cite{kohn65},
 \begin{equation}
 E^{\text{LDA}}_{\text{xc}}[n(\vec{r})]=\int\epsilon_{\text{xc}}(n(\vec{r}))n(\vec{r}) d\vec{r}
 \text{ ,}
@@ -428,13 +428,13 @@ This is called the generalized-gradient approximation (GGA), which expresses the
 E^{\text{GGA}}_{\text{xc}}[n(\vec{r})]=\int\epsilon_{\text{xc}}(n(\vec{r}),|\nabla n(\vec{r})|)n(\vec{r}) d\vec{r}
 \text{ .}
 \end{equation}
-These functionals constitute the simplest extensions of LDA for inhomogeneous systems.
-At modest computational costs gradient-corrected functionals very often yield much better results than the LDA with respect to cohesive and binding energies.
+This functional constitutes the simplest extension of LDA for inhomogeneous systems.
+At modest computational costs, gradient-corrected functionals very often yield much better results than the LDA with respect to cohesive and binding energies.
 
 \subsection{Plane-wave basis set}
 
 Finally, a set of basis functions is required to represent the one-electron KS wave functions.
-With respect to the numerical treatment it is favorable to approximate the wave functions by linear combinations of a finite number of such basis functions.
+With respect to the numerical treatment, it is favorable to approximate the wave functions by linear combinations of a finite number of such basis functions.
 Convergence of the basis set, i.e.\ convergence of the wave functions with respect to the amount of basis functions, is most crucial for the accuracy of the numerical calculations.
 Two classes of basis sets, the plane-wave and local basis sets, exist.
 
@@ -448,7 +448,7 @@ Another approach is to represent the KS wave functions by plane waves.
 In fact, the employed \textsc{vasp} software is solving the KS equations within a plane-wave (PW) basis set.
 The idea is based on the Bloch theorem~\cite{bloch29}, which states that in a periodic crystal each electronic wave function $\Phi_i(\vec{r})$ can be written as the product of a wave-like envelope function $\exp(i\vec{kr})$ and a function that has the same periodicity as the lattice.
 The latter one can be expressed by a Fourier series, i.e.\ a discrete set of plane waves whose wave vectors just correspond to reciprocal lattice vectors $\vec{G}$ of the crystal.
-Thus, the one-electron wave function $\Phi_i(\vec{r})$ associated with the wave vector $\vec{k}$ can be expanded in terms of a discrete PW basis set
+Thus, the one-electron wave function $\Phi_i(\vec{r})$ associated with the wave vector $\vec{k}$ can be expanded in terms of a discrete PW basis set:
 \begin{equation}
 \Phi_i(\vec{r})=\sum_{\vec{G}
 %, |\vec{G}+\vec{k}|<G_{\text{cut}}}
@@ -487,7 +487,7 @@ There are likewise disadvantages associated with the PW representation.
 By construction, PW calculations require a periodic system.
 This does not pose a severe problem since non-periodic systems can still be described by a suitable choice of the simulation cell.
 Describing a defect, for instance, requires the inclusion of enough bulk material in the simulation to prevent or reduce the interaction with its periodic, artificial images.
-As a consequence the number of atoms involved in the calculations are increased.
+As a consequence, the number of atoms involved in the calculations are increased.
 To describe surfaces, sufficiently thick vacuum layers need to be included to avoid interaction of adjacent crystal slabs.
 Clearly, to appropriately approximate the wave functions and the respective charge density of a system composed of vacuum in addition to the solid in a PW basis, an increase of the cut-off energy is required.
 According to equation \eqref{eq:basics:pwks} the size of the Hamiltonian depends on the cut-off energy and, therefore, the computational effort is likewise increased.
@@ -575,7 +575,7 @@ This is called the Hellmann-Feynman theorem~\cite{feynman39}, which enables the
 \label{section:basics:defects}
 
 Point defects are defects that affect a single lattice site.
-At this site the crystalline periodicity is interrupted.
+At this site, the crystalline periodicity is interrupted.
 An empty lattice site, which would be occupied in the perfect crystal structure, is called a vacancy defect.
 If an additional atom is incorporated into the perfect crystal, this is called interstitial defect.
 A substitutional defect exists, if an atom belonging to the perfect crystal is replaced with an atom of another species.