langsam ...
[lectures/latex.git] / posic / thesis / basics.tex
index 249614a..05c49e6 100644 (file)
@@ -4,7 +4,7 @@
 In the following the simulation methods used within the scope of this study are introduced.
 Enabling the investigation of the evolution of structure on the atomic scale, molecular dynamics (MD) simulations are chosen for modeling the behavior and precipitation of C introduced into an initially crystalline Si environment.
 To be able to model systems with a large amount of atoms computational efficient classical potentials to describe the interaction of the atoms are most often used in MD studies.
-For reasons of flexibility in executing this non-standard task and in order to be able to use a novel interaction potential \cite{albe_sic_pot} an appropriate MD code called \textsc{posic}\footnote{{\textsc posic} is an abbreviation for {\bf p}recipitation {\bf o}f {\bf SiC}} including a library collecting respective MD subroutines was developed from scratch\footnote{Source code: http://www.physik.uni-augsburg.de/\~{}zirkelfr/posic}.
+For reasons of flexibility in executing this non-standard task and in order to be able to use a novel interaction potential \cite{albe_sic_pot} an appropriate MD code called \textsc{posic}\footnote{\textsc{posic} is an abbreviation for {\bf p}recipitation {\bf o}f {\bf SiC}} including a library collecting respective MD subroutines was developed from scratch\footnote{Source code: http://www.physik.uni-augsburg.de/\~{}zirkelfr/posic}.
 The basic ideas of MD in general and the adopted techniques as implemented in \textsc{posic} in particular are outlined in section \ref{section:md}, while the functional form and derivative of the employed classical potential is presented in appendix \ref{app:d_tersoff}.
 An overview of the most important tools within the MD package is given in appendix \ref{app:code}.
 Although classical potentials are often most successful and at the same time computationally efficient in calculating some physical properties of a particular system, not all of its properties might be described correctly due to the lack of quantum-mechanical effects.
@@ -526,7 +526,7 @@ Mathematically, a non-local PP, which depends on the angular momentum, has the f
 V_{\text{nl}}(\vec{r}) = \sum_{lm} | lm \rangle V_l(\vec{r}) \langle lm |
 \text{ .}
 \end{equation}
-Applying of the operator $V_{\text{nl}}(\vec{r})$ decomposes the electronic wave functions into spherical harmonics $| lm \rangle$, i.e.\ the orbitals with azimuthal angular momentum $l$ and magnetic number $m$, which are then multiplied by the respective pseudopotential $V_l(\vec{r})$ for angular momentum $l$.
+Applying the operator $V_{\text{nl}}(\vec{r})$ decomposes the electronic wave functions into spherical harmonics $| lm \rangle$, i.e.\ the orbitals with azimuthal angular momentum $l$ and magnetic number $m$, which are then multiplied by the respective pseudopotential $V_l(\vec{r})$ for angular momentum $l$.
 The standard generation procedure of pseudopotentials proceeds by varying its parameters until the pseudo eigenvalues are equal to the all-electron valence eigenvalues and the pseudo wave functions match the all-electron valence wave functions beyond a certain cut-off radius determining the core region.
 Modified methods to generate ultra-soft pseudopotentials were proposed, which address the rapid convergence with respect to the size of the plane wave basis set \cite{vanderbilt90,troullier91}.