started bo
[lectures/latex.git] / posic / thesis / basics.tex
index 92b402c..135f2ac 100644 (file)
@@ -5,7 +5,7 @@ In the following the simulation methods used within the scope of this study are
 Enabling the investigation of the evolution of structure on the atomic scale, molecular dynamics (MD) simulations are chosen for modeling the behavior and precipitation of C introduced into an initially crystalline Si environment.
 To be able to model systems with a large amount of atoms computational efficient classical potentials to describe the interaction of the atoms are most often used in MD studies.
 For reasons of flexibility in executing this non-standard task and in order to be able to use a novel interaction potential \cite{albe_sic_pot} an appropriate MD code called {\textsc posic}\footnote{{\textsc posic} is an abbreviation for {\bf p}recipitation {\bf o}f {\bf SiC}}\footnote{Source code: http://www.physik.uni-augsburg.de/\~{}zirkelfr/posic/posic.tar.bz2} including a library collecting respective MD subroutines was developed from scratch.
-The basic ideas of MD in general and the adopted techniques as implemented in {\em posic} in particular are outlined in section \ref{section:md}, while the functional form and derivative of the employed classical potential is presented in appendix \ref{app:d_tersoff}.
+The basic ideas of MD in general and the adopted techniques as implemented in {\textsc posic} in particular are outlined in section \ref{section:md}, while the functional form and derivative of the employed classical potential is presented in appendix \ref{app:d_tersoff}.
 An overview of the most important tools within the MD package is given in appendix \ref{app:code}.
 Although classical potentials are often most successful and at the same time computationally efficient in calculating some physical properties of a particular system, not all of its properties might be described correctly due to the lack of quantum-mechanical effects.
 Thus, in order to obtain more accurate results quantum-mechanical calculations from first principles based on density functional theory (DFT) were performed.
@@ -277,9 +277,26 @@ It provides a stable algorithm that allows smooth changes of the system to new v
 \section{Denstiy functional theory}
 \label{section:dft}
 
-\subsection{Hohenberg-Kohn theorem}
+Dirac declared that chemistry has come to an end, its content being entirely contained in the powerul equation published by Schr\"odinger in 1926 \cite{schroeder26} marking the beginning of wave mechanics.
+Following the path of Schr\"odinger the problem in quantum-mechanical modeling of describing the many-body problem, i.e. a system of a large amount of interacting particles, is manifested in the high-dimensional Schr\"odinger equation for the wave function $\Psi({\vec{R}},{\vec{r}})$ that depends on the coordinates of all nuclei and electrons.
+The Schr\"odinger equation contains the kinetic energy of the ions and electrons as well as the electron-ion, ion-ion and electron-electron interaction.
+This cannot be solved exactly and finding approximate solutions requires several layers of simplification in order to reduce the number of free parameters.
+Approximations that consider a truncated Hilbert space of single-particle orbitals yield promising results, however, with increasing complexity and demand for high accuracy the amount of Slater determinats to be evaluated massively increases.
+
+In contrast, instead of using the description by the many-body wave function, the key point in density functional theory (DFT) is to recast the problem to a description utilizing the charge density $n(\vec{r})$, which constitutes a quantity in real space depending only on the three spatial coordinates.
+In the following sections the basic idea of DFT will be outlined.
+As will be shown, DFT can formally be regarded as an exactification of the Thomas Fermi theory \cite{thomas27,fermi27} and the self-consistent Hartree equations \cite{hartree28}.
+
+\subsection{Born-Oppenheimer approximation}
 
-\subsection{Born-Oppenheimer (adiabatic) approximation}
+Born and Oppenheimer proposed a simplification enabling the effective decoupling of the electronic and ionic degrees of freedom \cite{born27}.
+Within the Born-Oppenheimer (BO) approximation the light electrons are assumed to move much faster and, thus, follow adiabatically to the motion of the heavy nuclei, if the latter are only slightly deflected from their equilibrium positions.
+Thus, on the timescale of electronic motion the ions appear at fixed positions and, on the other way round, for the nuclei the electrons appear blurred in space adding an extra term to the ion-ion potential.
+The simplified Schr\"odinger equation is rewritten without the kinetic energy of the ions and its positions enter as fixed parameters.
+
+\subsection{Bloch theorem}
+
+\subsection{Hohenberg-Kohn theorem}
 
 \subsection{Effective potential}