fast feddich!
[lectures/latex.git] / posic / thesis / basics.tex
index 3bc9527..bd259d0 100644 (file)
@@ -381,7 +381,7 @@ The one-electron KS orbitals $\Phi_i(\vec{r})$ as well as the respective KS ener
 The KS equations may be considered the formal exactification of the Hartree theory, which it is reduced to if the exchange-correlation potential and functional are neglected.
 In addition to the Hartree-Fock (HF) method, KS theory includes the difference of the kinetic energy of interacting and non-interacting electrons as well as the remaining contributions to the correlation energy that are not part of the HF correlation.
 
 The KS equations may be considered the formal exactification of the Hartree theory, which it is reduced to if the exchange-correlation potential and functional are neglected.
 In addition to the Hartree-Fock (HF) method, KS theory includes the difference of the kinetic energy of interacting and non-interacting electrons as well as the remaining contributions to the correlation energy that are not part of the HF correlation.
 
-The self-consistent KS equations \eqref{eq:basics:kse1}, \eqref{eq:basics:kse2} and \eqref{eq:basics:kse3} may be solved numerically by an iterative process.
+The self-consistent KS equations \eqref{eq:basics:kse1}, \eqref{eq:basics:kse2} and \eqref{eq:basics:kse3} are non-linear partial differential equations, which may be solved numerically by an iterative process.
 Starting from a first approximation for $n(\vec{r})$ the effective potential $V_{\text{eff}}(\vec{r})$ can be constructed followed by determining the one-electron orbitals $\Phi_i(\vec{r})$, which solve the single-particle Schr\"odinger equation for the respective potential.
 The $\Phi_i(\vec{r})$ are used to obtain a new expression for $n(\vec{r})$.
 These steps are repeated until the initial and new density are equal or reasonably converged.
 Starting from a first approximation for $n(\vec{r})$ the effective potential $V_{\text{eff}}(\vec{r})$ can be constructed followed by determining the one-electron orbitals $\Phi_i(\vec{r})$, which solve the single-particle Schr\"odinger equation for the respective potential.
 The $\Phi_i(\vec{r})$ are used to obtain a new expression for $n(\vec{r})$.
 These steps are repeated until the initial and new density are equal or reasonably converged.
@@ -429,14 +429,54 @@ At modest computational costs gradient-corrected functionals very often yield mu
 
 \subsection{Plane-wave basis set}
 
 
 \subsection{Plane-wave basis set}
 
-Practically, the KS equations are non-linear partial differential equations that are iteratively solved.
-The one-electron KS wave functions can be represented in different basis sets.
+Finally, a set of basis functions is required to represent the one-electron KS wave functions.
+With respect to the numerical treatment it is favorable to approximate the wave functions by linear combinations of a finite number of such basis functions.
+Covergence of the basis set, i.e. convergence of the wave functions with respect to the amount of basis functions, is most crucial for the accuracy of the numerical calulations.
+Two classes of basis sets, the plane-wave and local basis sets, exist.
+
+Local basis set functions usually are atomic orbitals, i.e. mathematical functions that describe the wave-like behavior of electrons, which are localized, i.e. centered on atoms or bonds.
+Molecular orbitals can be represented by linear combinations of atomic orbitals (LCAO).
+By construction, only a small number of basis functions is required to represent all of the electrons of each atom within reasonable accuracy.
+Thus, local basis sets enable the implementation of methods that scale linearly with the number of atoms.
+However, these methods rely on the fact that the wave functions are localized and exhibit an exponential decay resulting in a sparse Hamiltonian.
+
+Another approach is to represent the KS wave functions by plane waves.
+In fact, the employed {\textsc vasp} software is solving the KS equations within a plane-wave basis set.
+The idea is based on the Bloch theorem \cite{bloch29}, which states that in a periodic crystal each electronic wave function $\Phi_i(\vec{r})$ can be written as the product of a wave-like envelope function $\exp(i\vec{kr})$ and a function that has the same periodicity as the lattice.
+The latter one can be expressed by a Fourier series, i.e. a discrete set of plane waves whose wave vectors just correspond to reciprocal lattice vectors $\vec{G}$ of the crystal.
+Thus, the one-electron wave function $\Phi_i(\vec{r})$ associated with the wave vector $\vec{k}$ can be expanded in terms of a discrete plane-wave basis set
+\begin{equation}
+\Phi_i(\vec{r})=\sum_{\vec{G}
+%, |\vec{G}+\vec{k}|<G_{\text{cut}}}
+}c_{i,\vec{k}+\vec{G}} \exp\left(i(\vec{k}+\vec{G})\vec{r}\right)
+\text{ .}
+%E_{\text{cut}}=\frac{\hbar^2 G^2_{\text{cut}}}{2m}
+%\text{, }
+\end{equation}
+The basis set, which in principle should be infinite, can be truncated to include only plane waves that have kinetic energies $\hbar^2|\vec{k}+\vec{G}|^2/2m$ less than a particular cut-off energy $E_{\text{cut}}$.
+Although coefficients $c_{i,\vec{k}+\vec{G}}$ corresponding to small kinetic energies are typically more important, convergence with respect to the cut-off energy is crucial for the accuracy of the calculations.
+Convergence with respect to the basis set, however, is easily achieved by increasing $E_{\text{cut}}$ until the respective differences in total energy approximate zero.
+Next to their simplicity, plane waves have several advantages.
+The basis set is orthonormal by construction.
+matrix elements of the Hamiltonian have a simple form (pw rep of ks equations)
+As mentioned above ... simple to check for convergence.
 
 
+Disadvantage ... periodic system required, but escapable by respective choice of the supercell.
+size of matrix to diagonalize determined by cut-off energy, severe 
 
 \subsection{Pseudopotentials}
 
 
 \subsection{Pseudopotentials}
 
+Since core electrons tend to be concentrated very close to the atomic nuclei, resulting in large wavefunction and density gradients near the nuclei which are not easily described by a plane-wave basis set unless a very high energy cutoff, and therefore small wavelength, is used.
+
 \subsection{Brillouin zone sampling}
 
 \subsection{Brillouin zone sampling}
 
+Due to the Bloch theorem only a finite number of electronic wave functions need to be calculated for a periodic system.
+However, to calculate quantities like the total energy or charge density, these have to be evaluated in a sum over an infinite number of $\vec{k}$ points.
+Since the values of the wave function within a small interval around $\vec{k}$ are almost identical, it is possible to approximate the infinite sum by a sum over an affordable number of $k$ points, each representing the respective region of the wave function in $\vec{k}$ space. 
+Methods have been derived for obtaining very accurate approximations by an intergration over special sets of $\vec{k}$ points \cite{}.
+If present, symmetries in reciprocal space may further reduce the number of calculations.
+For supercells, i.e. repeating unit cells that contain several primitive cells, sampling of the Brillouin zone restricted to the $\Gamma$ point can be quite accurately used, which is equivalent to calculating a single primitive cell using multiple $\vec{k}$ points.
+
 \subsection{Hellmann-Feynman forces}
 
 \section{Modeling of defects}
 \subsection{Hellmann-Feynman forces}
 
 \section{Modeling of defects}