sync aux<->pb
[lectures/latex.git] / posic / thesis / defects.tex
index 7b81390..4435c96 100644 (file)
@@ -1299,7 +1299,7 @@ In total 10 different configurations exist within the investigated range.
 \begin{center}
 \includegraphics[width=12cm]{c_sub_si110.ps}
 \end{center}
-\caption{Binding energy of combinations of a substitutional C and a Si \hkl<1 1 0> dumbbell self-interstitial with respect to the separation distance.}
+\caption[Binding energy of combinations of a substitutional C and a Si \hkl<1 1 0> dumbbell self-interstitial with respect to the separation distance.]{Binding energy of combinations of a substitutional C and a Si \hkl<1 1 0> dumbbell self-interstitial with respect to the separation distance. The binding energy of the defect pair is well approximated by a Lennard-Jones 6-12 potential, which is used for curve fitting.}
 \label{fig:defects:csub_si110}
 \end{figure}
 According to the formation energies none of the investigated structures is energetically preferred over the C-Si \hkl<1 0 0> dumbbell interstitial, which exhibits a formation energy of 3.88 eV.
@@ -1308,10 +1308,12 @@ This is affirmed by the plot of the binding energies with respect to the separat
 Thus, the C-Si \hkl<1 0 0> dumbbell structure remains the ground state configuration of a C interstitial in c-Si with a constant number of Si atoms.
 
 {\color{blue}
-However the binding energy quickly drops to zero with respect of the distance indicating a possibly low interaction capture radius of the defect pair.
+However the binding energy quickly drops to zero with respect to the distance, which is reinforced by the Lennard-Jones fit estimating almost zero interaction energy already at 0.6 nm.
+This indicates a possibly low interaction capture radius of the defect pair.
 Highly energetic collisions in the IBS process might result in separations of these defects exceeding the capture radius.
 For this reason situations most likely occur in which the configuration of substitutional C can be considered without a nearby interacting Si self-interstitial and, thus, unable to form a thermodynamically more stable C-Si \hkl<1 0 0> dumbbell configuration.
 }
+\label{section:defects:noneq_process_01}
 
 The energetically most favorable configuration of the combined structures is the one with the substitutional C atom located next to the \hkl<1 1 0> interstitial along the \hkl<1 1 0> direction (configuration \RM{1}).
 Compressive stress along the \hkl<1 1 0> direction originating from the Si \hkl<1 1 0> self-intesrtitial is partially compensated by tensile stress resulting from substitutional C occupying the neighboured Si lattice site.
@@ -1319,7 +1321,9 @@ In the same way the energetically most unfavorable configuration can be explaine
 The substitutional C is located next to the lattice site shared by the \hkl<1 1 0> Si self-interstitial along the \hkl<1 -1 0> direction.
 Thus, the compressive stress along \hkl<1 1 0> of the Si \hkl<1 1 0> interstitial is not compensated but intensified by the tensile stress of the substitutional C atom, which is no longer loacted along the direction of stress.
 
-{\color{red}Todo: Mig of C-Si DB conf to or from C sub + Si 110 int conf.}
+{\color{red}Todo: Erhart/Albe calc for most and less favorable configuration!}
+
+{\color{red}Todo: Mig of C-Si DB conf to or from C sub + Si 110 in progress.}
 
 \section{Migration in systems of combined defects}
 
@@ -1395,6 +1399,7 @@ At a displacement of 60 \% these bonds are broken.
 Due to this and due to the formation of new bonds, that is the bond of silicon atom number 1 to silicon atom number 5 and the bond of the carbon atom to its siliocn neighbour in the bottom left, a less steep increase of free energy is observed.
 At a displacement of approximately 30 \% the bond of silicon atom number 1 to the just recently created siliocn atom is broken up again, which explains the repeated boost in energy.
 Finally the system gains energy relaxing into the configuration of zero displacement.
+{\color{red}Todo: Direct migration of C in progress.}
 
 Due to the low binding energy observed, the configuration of the vacancy created at position 3 is assumed to be stable against transition.
 However, a relatively simple migration path exists, which intuitively seems to be a low energy process.
@@ -1434,6 +1439,7 @@ Thus, carbon interstitials and vacancies located close together are assumed to e
 
 While first results support the proposed precipitation model the latter suggest the formation of silicon carbide by succesive creation of substitutional carbon instead of the agglomeration of C-Si dumbbell interstitials followed by an abrupt transition.
 Prevailing conditions in the IBS process at elevated temperatures and the fact that IBS is a nonequilibrium process reinforce the possibility of formation of substitutional C instead of the thermodynamically stable C-Si dumbbell interstitials predicted by simulations at zero Kelvin.
+\label{section:defects:noneq_process_02}
 
 {\color{blue}
 In addition, there are experimental findings, which might be exploited to reinforce the non-validity of the proposed precipitation model.