commas 'In addition' and time step!
[lectures/latex.git] / posic / thesis / defects.tex
index 32ff824..4bb2677 100644 (file)
@@ -115,7 +115,7 @@ In Fig.~\ref{fig:defects:kin_si_hex} the relaxation process is shown on the basi
 \caption{Kinetic energy plot of the relaxation process of the hexagonal silicon self-interstitial defect simulation using the EA potential.}
 \label{fig:defects:kin_si_hex}
 \end{figure}
-To exclude failures in the implementation of the potential or the MD code itself the hexagonal defect structure was double-checked with the \textsc{parcas} MD code~\cite{parcas_md}.
+To exclude failures in the implementation of the potential or the MD code itself, the hexagonal defect structure was double-checked with the \textsc{parcas} MD code~\cite{parcas_md}.
 The respective relaxation energetics are likewise plotted and look similar to the energetics obtained by \textsc{posic}.
 In fact, the same type of interstitial arises using random insertions.
 In addition, variations exist, in which the displacement is only along two \hkl<1 0 0> axes ($E_\text{f}=3.8\,\text{eV}$) or along a single \hkl<1 0 0> axes ($E_\text{f}=3.6\,\text{eV}$) successively approximating the tetrahedral configuration and formation energy.
@@ -388,7 +388,7 @@ On the other hand, the C atom forms an almost collinear bond ($\theta_3$) with t
 This is supported by the image of the charge density isosurface in Fig.~\ref{img:defects:charge_den_and_ksl}.
 The two lower Si atoms are $sp^3$ hybridized and form $\sigma$ bonds to the Si DB atom.
 The same is true for the upper two Si atoms and the C DB atom.
-In addition the DB atoms form $\pi$ bonds.
+In addition, the DB atoms form $\pi$ bonds.
 However, due to the increased electronegativity of the C atom the electron density is attracted by and, thus, localized around the C atom.
 In the same figure the Kohn-Sham levels are shown.
 There is no magnetization density.
@@ -1327,7 +1327,7 @@ In the second case the lowest barrier is found for the migration of Si number 1,
 A net amount of five Si-Si and one Si-C bond are additionally formed during transition.
 An activation energy of \unit[0.6]{eV} necessary to overcome the migration barrier is found.
 This energy is low enough to constitute a feasible mechanism in SiC precipitation.
-To reverse this process \unit[5.4]{eV} are needed, which make this mechanism very improbable.
+To reverse this process, \unit[5.4]{eV} are needed, which make this mechanism very improbable.
 %
 The migration path is best described by the reverse process.
 Starting at \unit[100]{\%}, energy is needed to break the bonds of Si atom 1 to its neighbored Si atoms as well as the bond of the C atom to Si atom number 5.