more on vacs
[lectures/latex.git] / posic / thesis / defects.tex
index d5afa44..509c753 100644 (file)
@@ -852,16 +852,16 @@ d) \underline{$E_{\text{b}}=-1.38\text{ eV}$}
 \end{minipage}
 \end{center}
 \caption{Relaxed structures of defect complexes obtained by creating a a) \hkl<0 0 1>, a b) \hkl<0 0 -1>, a c) \hkl<0 -1 0> and a d) \hkl<1 0 0> dumbbell at position 5.}
-\label{fig:defects:comb_db_05}
+\label{fig:defects:comb_db_03}
 \end{figure}
 Energetically beneficial configurations of defect complexes are observed for second interstititals of all orientations placed at position 5, a position two bonds away from the initial interstitial along the \hkl<1 1 0> direction.
-Relaxed structures of these complexes are displayed in figure \ref{fig:defects:comb_db_05}.
-Figure \ref{fig:defects:comb_db_05} a) and b) show the relaxed structures of \hkl<0 0 1> and \hkl<0 0 -1> dumbbells.
+Relaxed structures of these complexes are displayed in figure \ref{fig:defects:comb_db_03}.
+Figure \ref{fig:defects:comb_db_03} a) and b) show the relaxed structures of \hkl<0 0 1> and \hkl<0 0 -1> dumbbells.
 The upper dumbbell atoms are pushed towards each other forming fourfold coordinated bonds.
 While the displacements of the silicon atoms in case b) are symmetric to the \hkl(1 1 0) plane, in case a) the silicon atom of the initial dumbbel is pushed a little further in the direction of the carbon atom of the second dumbbell than the carbon atom is pushed towards the silicon atom.
 The bottom atoms of the dumbbells remain in threefold coordination.
 The symmetric configuration is energetically more favorable ($E_{\text{b}}=-1.66\text{ eV}$) since the displacements of the atoms is less than in the antiparallel case ($E_{\text{b}}=-1.53\text{ eV}$).
-In figure \ref{fig:defects:comb_db_05} c) and d) the nonparallel orientations, namely the \hkl<0 -1 0> and \hkl<1 0 0> dumbbells are shown.
+In figure \ref{fig:defects:comb_db_03} c) and d) the nonparallel orientations, namely the \hkl<0 -1 0> and \hkl<1 0 0> dumbbells are shown.
 Binding energies of -1.88 eV and -1.38 eV are obtained for the relaxed structures.
 In both cases the silicon atom of the initial interstitial is pulled towards the near by atom of the second dumbbell so that both atoms form fourfold coordinated bonds to their next neighbours.
 In case c) it is the carbon and in case d) the silicon atom of the second interstitial which forms the additional bond with the silicon atom of the initial interstitial.
@@ -898,12 +898,141 @@ Type & \hkl<-1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \hkl<1 0 0> & \h
 Figure \ref{fig:defects:comb_db110} shows the corresponding plot of the data including a cubic spline interplation and a suitable fitting curve.
 The funtion found most suitable for curve fitting is $f(x)=a/x^3$ comprising the single fit parameter $a$.
 Thus, far-off located dumbbells show an interaction proportional to the reciprocal cube of the distance and the amount of bonds along \hkl<1 1 0> respectively.
-This behavior is no longer valid for the immediate vicinity revealed by the saturating binding energy of a second dumbbell at position 1, which was ignored in the fitting procedure.
-
+This behavior is no longer valid for the immediate vicinity revealed by the saturating binding energy of a second dumbbell at position 1, which is ignored in the fitting procedure.
 {\color{red}Todo: DB mig along 110?}
 
+\begin{figure}[t!h!]
+\begin{center}
+\begin{minipage}[t]{5cm}
+a) \underline{Pos: 1, $E_{\text{b}}=0.26\text{ eV}$}
+\begin{center}
+\includegraphics[width=4.8cm]{00-1dc/0-26.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{5cm}
+b) \underline{Pos: 3, $E_{\text{b}}=-0.93\text{ eV}$}
+\begin{center}
+\includegraphics[width=4.8cm]{00-1dc/0-93.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{5cm}
+c) \underline{Pos: 5, $E_{\text{b}}=0.49\text{ eV}$}
+\begin{center}
+\includegraphics[width=4.8cm]{00-1dc/0-49.eps}
+\end{center}
+\end{minipage}
+\end{center}
+\caption{Relaxed structures of defect complexes obtained by creating a carbon substitutional at position 1 (a)), 3 (b)) and 5 (c)).}
+\label{fig:defects:comb_db_04}
+\end{figure}
+\begin{figure}[t!h!]
+\begin{center}
+\begin{minipage}[t]{7cm}
+a) \underline{Pos: 2, $E_{\text{b}}=-0.51\text{ eV}$}
+\begin{center}
+\includegraphics[width=6cm]{00-1dc/0-51.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{7cm}
+b) \underline{Pos: 4, $E_{\text{b}}=-0.15\text{ eV}$}
+\begin{center}
+\includegraphics[width=6cm]{00-1dc/0-15.eps}
+\end{center}
+\end{minipage}
+\end{center}
+\caption{Relaxed structures of defect complexes obtained by creating a carbon substitutional at position 2 (a)) and 4 (b)).}
+\label{fig:defects:comb_db_05}
+\end{figure}
+The second part of table \ref{tab:defects:e_of_comb} lists the energetic results of substitutional carbon and vacancy combinations with the initial \hkl<0 0 -1> dumbbell.
+Figures \ref{fig:defects:comb_db_04} and \ref{fig:defects:comb_db_05} show relaxed structures of substitutional carbon in combination with the \hkl<0 0 -1> dumbbell for several positions.
+In figure \ref{fig:defects:comb_db_04} positions 1 (a)), 3 (b)) and 5 (c)) are displayed.
+A substituted carbon atom at position 5 results in an energetically extremely unfavorable configuration.
+Both carbon atoms, the substitutional and the dumbbell atom, pull silicon atom number 1 towards their own location regarding the \hkl<1 1 0> direction.
+Due to this a large amount of tensile strain energy is needed, which explains the high positive value of 0.49 eV.
+The lowest binding energy is observed for a substitutional carbon atom inserted at position 3.
+The substitutional carbon atom is located above the dumbbell substituting a silicon atom which would usually be bound to and displaced along \hkl<0 0 1> and \hkl<1 1 0> by the silicon dumbbell atom.
+In contrast to the previous configuration strain compensation occurs resulting in a binding energy as low as -0.93 eV.
+Substitutional carbon at position 2 and 4, visualized in figure \ref{fig:defects:comb_db_05}, is located below the initial dumbbell.
+Silicon atom number 1, which is bound to the interstitial carbon atom is displaced along \hkl<0 0 -1> and \hkl<-1 -1 0>.
+In case a) only the first displacement is compensated by the substitutional carbon atom.
+This results in a somewhat higher binding energy of -0.51 eV.
+The binding energy gets even higher in case b) ($E_{\text{b}}=-0.15\text{ eV}$), in which the substitutional carbon is located further away from the initial dumbbell.
+In both cases, silicon atom number 1 is displaced in such a way, that the bond to silicon atom number 5 vanishes.
+In case of \ref{fig:defects:comb_db_04} a) the carbon atoms form a bond with a distance of 1.5 \AA, which is close to the C-C distance expected in diamond or graphit.
+Both carbon atoms are highly attracted by each other resulting in large displacements and high strain energy in the surrounding.
+A binding energy of 0.26 eV is observed.
+Substitutional carbon at positions 2, 3 and 5 are the energetically most favorable configurations and constitute promising starting points for SiC precipitation.
+On the one hand, C-C distances around 3.1 \AA{} exist for substitution positions 2 and 3, which are close to the C-C distance expected in silicon carbide.
+On the other hand stretched silicon carbide is obtained by the transition of the silicon dumbbell atom into a silicon self-interstitial located somewhere in the silicon host matrix and th etransition of the carbon dumbbell atom into another substitutional atom occupying the dumbbell lattice site.
+
+\begin{figure}[t!h!]
+\begin{center}
+\begin{minipage}[t]{7cm}
+a) \underline{Pos: 2, $E_{\text{b}}=-0.59\text{ eV}$}
+\begin{center}
+\includegraphics[width=6.0cm]{00-1dc/0-59.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{7cm}
+b) \underline{Pos: 3, $E_{\text{b}}=-3.14\text{ eV}$}
+\begin{center}
+\includegraphics[width=6.0cm]{00-1dc/3-14.eps}
+\end{center}
+\end{minipage}\\[0.2cm]
+\begin{minipage}[t]{7cm}
+c) \underline{Pos: 4, $E_{\text{b}}=-0.54\text{ eV}$}
+\begin{center}
+\includegraphics[width=6.0cm]{00-1dc/0-54.eps}
+\end{center}
+\end{minipage}
+\begin{minipage}[t]{7cm}
+d) \underline{Pos: 5, $E_{\text{b}}=-0.50\text{ eV}$}
+\begin{center}
+\includegraphics[width=6.0cm]{00-1dc/0-50.eps}
+\end{center}
+\end{minipage}
+\end{center}
+\caption{Relaxed structures of defect complexes obtained by creating vacancies at positions 2 (a)), 3 (b)), 4 (c)) and 5 (d)).}
+\label{fig:defects:comb_db_06}
+\end{figure}
+Figure \ref{fig:defects:comb_db_06} displays relaxed structures of vacancies in combination with the \hkl<0 0 -1> dumbbell interstital.
+The creation of a vacancy at position 1 results in a configuration of substitutional carbon on a silicon lattice site and no other remaining defects.
+The carbon dumbbell atom moves to position 1 where the vacancy is created and the silicon dumbbell atom recaptures the dumbbell lattice site.
+With a binding energy of -5.39 eV, this is the energetically most favorable configuration observed.
+A great amount of strain energy is reduced by removing the silicon atom at position 3, which is illustrated in figure \ref{fig:defects:comb_db_06} b).
+The dumbbell structure shifts towards the position of the vacancy which replaces the silicon atom usually bond to and at the same time strained by the silicon dumbbell atom.
+Due to the displacement into the \hkl<1 -1 0> direction the bond of the dumbbell silicon atom to the silicon atom on the top left breaks and instead forms a bond to the silicon atom located in \hkl<1 -1 1> direction which is not shown in the figure.
+A binding energy of -3.14 eV is obtained for this structure composing another energetically favorable configuration.
+
+Vacancies created at positions 2 and 4 have similar
+
+Vac at position 2 and 4 have similar results.
+Less strain is reduced, since the displacement of the bottom silicon atom, whcih would be directly bond to the silicon atom replaced by the vacancy, is less.
+In the second case, there is even less strain reduction since the second next neighbour is replaced by the vacancy.
+A symmetric configuration is expected, but it is not!
+jahn-Teller distortion ... check this!
+In both cases the db is tilted in such a way, that the carbon atom moves towards the vacancy.
+At position 5 the silicon dumbbell atom moves in \hkl<1 1 0> direction, the same direction where the vacancy is located.
+Strain reducde by this is partialy absorbed by strain originating from the fact that si atom bound to and pulled by the carbon atom is also pulled by the vacancy.
+
+CHECK C-C DIST AND SI-C DIST !!! of all!!!
+
+{\color{red}Todo: Jahn-Teller distortion (vacancy) $\rightarrow$ actually three possibilities? Due to the initial defect symmetries are broken. It should have relaxed into the minumum energy configuration!?}
+Once a vacancy exists the minimal e conf is the c sub conf and ofcourse necessary for formation of SiC.
+The question is whether the migration into this conf is possible.
+Due to low e of conf at pos 3, this might constitute a trap.
+Thats why we havt to look at migration barriers into the configurations beneficial for SiC prec.
+Fig shows the migration of the 2 and 3 conf into the c sub conf.
+Low migration barriers, which means that SiC will modt probably form ... and so on ...
+
 {\color{red}Todo: Si int and C sub ...}
+The existance of a vacancy is most often accompanied by an interstitial.
+The silicon interstitital might diffuse to the surface or recombine with other vacancy defects and tus is out of the interested simulation region.
+However, investigation of near by vacancy, Si and C interstititla is necessary, too.
+As for the ground state of the single Si self-int a 110 this is also assumed as the lowest possibility in combination with other defects, which is a cruel assumption!!!
 
 {\color{red}Todo: Model of kick-out and kick-in mechnism?}
 
-{\color{red}Todo: Jahn-Teller distortion (vacancy) $\rightarrow$ actually three possibilities! :(}
+
+\section{Conclusions for SiC preciptation}
+