more defect combo
[lectures/latex.git] / posic / thesis / defects.tex
index d62b327..5bec37f 100644 (file)
@@ -541,14 +541,16 @@ Results discussed in \ref{subsection:bc} indicate, that the bond-ceneterd config
 Thus, the \hkl<0 0 -1> to \hkl<0 0 1> migration can be thought of a two-step mechanism in which the intermediate bond-cenetered configuration constitutes a metastable configuration.
 Due to symmetry it is enough to consider the transition from the bond-centered to the \hkl<1 0 0> configuration or vice versa.
 In the second path, the carbon atom is changing its silicon partner atom as in path one.
-However, the the trajectory of the carbon atom is no longer proceeding in the \hkl(1 1 0) plane.
+However, the trajectory of the carbon atom is no longer proceeding in the \hkl(1 1 0) plane.
 The orientation of the new dumbbell configuration is transformed from \hkl<0 0 -1> to \hkl<0 -1 0>.
 Again one bond is broken while another one is formed.
 As a last migration path, the defect is only changing its orientation.
-The silicon dumbbell partner remains.
+Thus, it is not responsible for long-range migration.
+The silicon dumbbell partner remains the same.
 The bond to the face-centered silicon atom at the bottom of the unit cell breaks and a new one is formed to the face-centered atom at the forefront of the unit cell.
 Todo: \hkl<1 1 0> to \hkl<1 0 0> and bond-centerd configuration (in progress).
 Todo: \hkl<1 1 0> to \hkl<0 -1 0> (rotation of the DB, in progress).
+Todo: Comparison with classical potential simulations or explanation to only focus on ab initio calculations.
 
 Since the starting and final structure, which are both local minima of the potential energy surface, are known, the aim is to find the minimum energy path from one local minimum to the other one.
 One method to find a minimum energy path is to move the diffusing atom stepwise from the starting to the final position and only allow relaxation in the plane perpendicular to the direction of the vector connecting its starting and final position.
@@ -566,7 +568,7 @@ Todo: To refine the migration barrier one has to find the saddle point structure
 
 \begin{figure}[h]
 \begin{center}
-\includegraphics[width=13cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.5cm]
+\includegraphics[width=13cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[1.5cm]
 \begin{picture}(0,0)(150,0)
 \includegraphics[width=2.5cm]{vasp_mig/00-1.eps}
 \end{picture}
@@ -576,6 +578,12 @@ Todo: To refine the migration barrier one has to find the saddle point structure
 \begin{picture}(0,0)(-120,0)
 \includegraphics[width=2.5cm]{vasp_mig/bc.eps}
 \end{picture}
+\begin{picture}(0,0)(25,20)
+\includegraphics[width=2.5cm]{110_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(200,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
 \end{center}
 \caption[Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to bond-centered (right) transition.]{Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to bond-centered (right) transition. Bonds of the carbon atoms are illustrated by blue lines.}
 \label{fig:defects:00-1_001_mig}
@@ -583,23 +591,151 @@ Todo: To refine the migration barrier one has to find the saddle point structure
 In figure \ref{fig:defects:00-1_001_mig} results of the \hkl<0 0 -1> to \hkl<0 0 1> migration fully described by the migration of the \hkl<0 0 -1> dumbbell to the bond-ceneterd configuration is displayed.
 To reach the bond-centered configuration, which is 0.94 eV higher in energy than the \hkl<0 0 -1> dumbbell configuration, an energy barrier of approximately 1.2 eV, given by the saddle point structure at a displacement of 60 \%, has to be passed.
 This amount of energy is needed to break the bond of the carbon atom to the silicon atom at the bottom left.
+In a second process 0.25 eV of energy are needed for the system to revert into a \hkl<1 0 0> configuration.
 
 \begin{figure}[h]
 \begin{center}
-\includegraphics[width=13cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[0.5cm]
-\begin{picture}(0,0)(150,0)
-\includegraphics[width=2.5cm]{vasp_mig/00-1.eps}
+\includegraphics[width=13cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[1.6cm]
+\begin{picture}(0,0)(140,0)
+\includegraphics[width=2.5cm]{vasp_mig/00-1_a.eps}
 \end{picture}
-\begin{picture}(0,0)(-10,0)
-\includegraphics[width=2.5cm]{vasp_mig/bc_00-1_sp.eps}
+\begin{picture}(0,0)(20,0)
+\includegraphics[width=2.5cm]{vasp_mig/00-1_0-10_sp.eps}
 \end{picture}
 \begin{picture}(0,0)(-120,0)
-\includegraphics[width=2.5cm]{vasp_mig/bc.eps}
+\includegraphics[width=2.5cm]{vasp_mig/0-10.eps}
+\end{picture}
+\begin{picture}(0,0)(25,20)
+\includegraphics[width=2.5cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(200,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
 \end{picture}
 \end{center}
 \caption[Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to the \hkl<0 -1 0> dumbbell (right) transition.]{Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to the \hkl<0 -1 0> dumbbell (right) transition. Bonds of the carbon atoms are illustrated by blue lines.}
 \label{fig:defects:00-1_0-10_mig}
 \end{figure}
+Figure \ref{fig:defects:00-1_0-10_mig} shows the migration barrier and structures of the \hkl<0 0 -1> to \hkl<0 -1 0> dumbbell transition.
+The resulting migration barrier of approximately 0.9 eV is very close to the experimentally obtained values of 0.73 \cite{song90} and 0.87 eV \cite{tipping87}.
+
+\begin{figure}[h]
+\begin{center}
+\includegraphics[width=13cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[1.8cm]
+\begin{picture}(0,0)(140,0)
+\includegraphics[width=2.2cm]{vasp_mig/00-1_b.eps}
+\end{picture}
+\begin{picture}(0,0)(20,0)
+\includegraphics[width=2.2cm]{vasp_mig/00-1_ip0-10_sp.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,0)
+\includegraphics[width=2.2cm]{vasp_mig/0-10_b.eps}
+\end{picture}
+\begin{picture}(0,0)(25,20)
+\includegraphics[width=2.5cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(200,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\caption[Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to the \hkl<0 -1 0> dumbbell (right) transition in place.]{Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to the \hkl<0 -1 0> dumbbell (right) transition in place. Bonds of the carbon atoms are illustrated by blue lines.}
+\label{fig:defects:00-1_0-10_ip_mig}
+\end{figure}
+The third migration path in which the dumbbell is changing its orientation is shown in figure \ref{fig:defects:00-1_0-10_ip_mig}.
+An energy barrier of roughly 1.2 eV is observed.
+Experimentally measured activation energies for reorientation range from 0.77 eV to 0.88 eV \cite{watkins76,song90}.
+Thus, this pathway is more likely to be composed of two consecutive steps of the second path.
+
+Since the activation energy of the first and last migration path is much greater than the experimental value, the second path is identified to be responsible as a migration path for the most likely carbon interstitial in silicon explaining both, annealing and reorientation experiments.
+The activation energy of roughly 0.9 eV nicely compares to experimental values.
+The theoretical description performed in this work is improved compared to a former study \cite{capaz94}, which underestimates the experimental value by 35 \%.
+In addition the bond-ceneterd configuration, for which spin polarized calculations are necessary, is found to be a real local minimum instead of a saddle point configuration.
 
 \section{Combination of point defects}
 
+The structural and energetic properties of combinations of point defects are investigated in the following.
+The focus is on combinations of the \hkl<0 0 -1> dumbbell interstitial with a second defect.
+The second defect is either another \hkl<1 0 0>-type interstitial occupying different orientations, a vacany or a substitutional carbon atom.
+Several distances of the two defects are examined.
+Investigations are restricted to quantum-mechanical calculations.
+\begin{figure}[h]
+\begin{center}
+\begin{minipage}{7.5cm}
+\includegraphics[width=7cm]{comb_pos.eps}
+\end{minipage}
+\begin{minipage}{6.0cm}
+\underline{Positions given in $a_{\text{Si}}$}\\[0.3cm]
+Initial interstitial: $\frac{1}{4}\hkl<1 1 1>$\\
+Relative silicon neighbour positions:
+\begin{enumerate}
+ \item $\frac{1}{4}\hkl<1 1 -1>$, $\frac{1}{4}\hkl<-1 -1 -1>$
+ \item $\frac{1}{2}\hkl<1 0 1>$, $\frac{1}{2}\hkl<0 1 -1>$,\\[0.2cm]
+       $\frac{1}{2}\hkl<0 -1 -1>$, $\frac{1}{2}\hkl<-1 0 -1>$
+ \item $\frac{1}{4}\hkl<1 -1 1>$, $\frac{1}{4}\hkl<-1 1 1>$
+ \item $\frac{1}{4}\hkl<-1 1 -3>$, $\frac{1}{4}\hkl<1 -1 -3>$
+ \item $\frac{1}{2}\hkl<-1 -1 0>$, $\frac{1}{2}\hkl<1 1 0>$
+\end{enumerate}
+\end{minipage}\\
+\begin{picture}(0,0)(190,20)
+\includegraphics[width=2.3cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(220,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\caption[\hkl<0 0 -1> dumbbell interstitial defect and positions of next neighboured silicon atoms used for the second defect.]{\hkl<0 0 -1> dumbbell interstitial defect and positions of next neighboured silicon atoms used for the second defect. Two possibilities exist for red numbered atoms and four possibilities exist for blue numbered atoms.}
+\label{fig:defects:pos_of_comb}
+\end{figure}
+\begin{table}[h]
+\begin{center}
+\begin{tabular}{l c c c c c}
+\hline
+\hline
+ & 1 & 2 & 3 & 4 & 5 \\
+ \hline
+ \hkl<0 0 -1> & {\color{red}-0.08} & -1.15 & {\color{red}-0.08} & 0.04 & -1.66\\
+ \hkl<0 0 1> & 0.34 & 0.004 & -2.05 & 0.26 & -1.53\\
+ \hkl<0 -1 0> & {\color{orange}-2.39} & -2.16 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{magenta}-1.88}\\
+ \hkl<0 1 0> & {\color{cyan}-2.25} & -0.36 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{violet}-1.38}\\
+ \hkl<-1 0 0> & {\color{orange}-2.39} & -1.90 & {\color{cyan}-2.25} & {\color{purple}-0.12} & {\color{magenta}-1.88}\\
+ \hkl<1 0 0> & {\color{cyan}-2.25} & -0.17 & {\color{green}-0.10} & {\color{blue}-0.27} & {\color{violet}-1.38} \\
+ \hline
+ C substitutional (C$_{\text{S}}$) & 0.26 & -0.51 & -0.93 & -0.15 & 0.49 \\
+ Vacancy & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 \\
+\hline
+\hline
+\end{tabular}
+\end{center}
+\caption[Energetic results of defect combinations.]{Energetic results of defect combinations. The given energies in eV are defined by equation \eqref{eq:defects:e_of_comb}. Equivalent configurations are marked by identical colors. The first column lists the types of the second defect combined with the initial \hkl<0 0 -1> dumbbell interstitial. The position index of the second defect is given in the first row according to figure \ref{fig:defects:pos_of_comb}.}
+\label{tab:defects:e_of_comb}
+\end{table}
+Figure \ref{fig:defects:pos_of_comb} shows the initial \hkl<0 0 -1> dumbbell interstitial defect and the positions of next neighboured silicon atoms used for the second defect.
+Table \ref{tab:defects:e_of_comb} summarizes energetic results obtained after relaxation of the defect combinations.
+The energy of interest $E$ is defined to be
+\begin{equation}
+E=
+E_{\text{f}}^{\text{defect combination}}-
+E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}-
+E_{\text{f}}^{\text{2nd defect}}
+\label{eq:defects:e_of_comb}
+\end{equation}
+with $E_{\text{f}}^{\text{defect combination}}$ being the formation energy of the defect combination, $E_{\text{f}}^{\text{C \hkl<0 0 -1> dumbbell}}$ being the formation energy of the C \hkl<0 0 -1> dumbbell interstitial defect and $E_{\text{f}}^{\text{2nd defect}}$ being the formation energy of the second defect.
+For defects far away from each other the formation energy of the defect combination should approximately become the sum of the formation energies of the individual defects.
+The interaction of such defects is low resulting in $E=0$.
+In fact, for another \hkl<0 0 -1> dumbbell interstitial created at position $\frac{a_{\text{Si}}}{2}\hkl<3 2 3>$ relative to the initial one an energy of \ldots eV is obtained.
+Configurations wih energies greater than zero are energetically unfavorable and expose a repulsive interaction.
+These configurations are unlikely to arise or to persist for non-zero temperatures.
+Energies below zero indicate configurations favored compared to configurations in which these point defects are separated far away from each other.
+
+Investigating the first part of table \ref{tab:defects:e_of_comb}, namely the combinations with another \hkl<1 0 0>-type interstitial, most of the combinations result in energies below zero.
+Surprisingly the most favorable configurations are the ones with the second defect created at the very next silicon neighbour and a change in orientation compared to the initial one.
+\begin{figure}[h]
+\caption{}
+\label{fig:defects:comb_db_01}
+\end{figure}
+Figure \ref{} shows the structure of these two configurations.
+
+
+
+
+
+