started combo of defects
[lectures/latex.git] / posic / thesis / defects.tex
index 3d41711..b421b3d 100644 (file)
@@ -187,7 +187,8 @@ To exclude failures in the implementation of the potential or the MD code itself
 The same type of interstitial arises using random insertions.
 In addition, variations exist in which the displacement is only along two \hkl<1 0 0> axes ($E_\text{f}=3.8\text{ eV}$) or along a single \hkl<1 0 0> axes ($E_\text{f}=3.6\text{ eV}$) successively approximating the tetdrahedral configuration and formation energy.
 The existence of these local minima located near the tetrahedral configuration seems to be an artifact of the analytical potential without physical authenticity revealing basic problems of analytical potential models for describing defect structures.
-However, the energy barrier is small (DAS MAL DURCHRECHNEN).
+However, the energy barrier is small.
+Todo: Check!
 Hence these artifacts should have a negligent influence in finite temperature simulations.
 
 The bond-centered configuration is unstable and the \hkl<1 0 0> dumbbell interstitial is the most unfavorable configuration for both, the Erhard/Albe and VASP calculations.
@@ -198,7 +199,7 @@ The length of these bonds are, however, close to the cutoff range and thus are w
 The same applies to the bonds between the interstitial and the upper two atoms in the \hkl<1 1 0> dumbbell configuration.
 
 A more detailed description of the chemical bonding is achieved by quantum-mechanical calculations by investigating the accumulation of negative charge between the nuclei.
-Todo: Plot the electron density for these types of defect to derive conclusions of existing bonds ...
+Todo: Plot the electron density for these types of defect to derive conclusions of existing bonds?
 
 \section{Carbon related point defects}
 
@@ -313,7 +314,7 @@ The fact that the tetrahedral and hexagonal configurations are the two most unst
 
 Just as for the Si self-interstitial a carbon \hkl<1 1 0> dumbbell configuration exists.
 For the Erhard/Albe potential the formation energy is situated in the same order as found by quantum-mechanical results.
-Similar structures arise in both types of simulations with the silicon and carbon atom sharing a silicon lattice site aligned along \hkl[1 1 0] where the carbon atom is localized slightly closer to the next nearest silicon atom located in the opposite direction to the site-sharing silicon atom even forming a bond to the next but one silicon atom in this direction.
+Similar structures arise in both types of simulations with the silicon and carbon atom sharing a silicon lattice site aligned along \hkl<1 1 0> where the carbon atom is localized slightly closer to the next nearest silicon atom located in the opposite direction to the site-sharing silicon atom even forming a bond to the next but one silicon atom in this direction.
 
 The bond-centered configuration is unstable for the Erhard/Albe potential.
 The system moves into the \hkl<1 1 0> interstitial configuration.
@@ -452,7 +453,7 @@ This is in agreement with results of the Erhard/Albe potential simulations which
 However, this fact could not be reproduced by spin polarized VASP calculations performed in this work.
 Present results suggest this configuration to be a real local minimum.
 In fact, an additional barrier has to be passed to reach this configuration starting from the \hkl<1 0 0> interstitital configuration, which is investigated in section \ref{subsection:100mig}.
-After slightly displacing the carbon atom along the \hkl<1 0 0> (equivalent to a displacement along \hkl<0 1 0>), \hkl<0 0 1> and \hkl<1 -1 0> direction the resulting structures relax back into the bond-centered configuration.
+After slightly displacing the carbon atom along the \hkl<1 0 0> (equivalent to a displacement along \hkl<0 1 0>), \hkl<0 0 1>, \hkl<0 0 -1> and \hkl<1 -1 0> direction the resulting structures relax back into the bond-centered configuration.
 As we will see in later migration simulations the same would happen to structures where the carbon atom is displaced along the migration direction, which approximately is the \hkl<1 1 0> direction.
 These relaxations indicate that the bond-cenetered configuration is a real local minimum instead of an assumed saddle point configuration.
 Figure \ref{img:defects:bc_conf} shows the structure, the charge density isosurface and the Kohn-Sham levels of the bond-centered configuration.
@@ -469,13 +470,222 @@ In addition, the energy level diagram shows a net amount of two spin up electron
 In the following the problem of interstitial carbon migration in silicon is considered.
 Since the carbon \hkl<1 0 0> dumbbell interstitial is the most probable hence most important configuration the migration simulations focus on this defect.
 
-There are different methods of computing migration paths and energies.
-Methods and shortcomings.
+\begin{figure}[h]
+\begin{center}
+\begin{minipage}{15cm}
+\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 0 1>}\\
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/100_2333.eps}
+\end{minipage}
+\begin{minipage}{0.5cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/bc_2333.eps}
+\end{minipage}
+\begin{minipage}{0.5cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/100_next_2333.eps}
+\end{minipage}
+\end{minipage}\\
+\begin{minipage}{15cm}
+\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0>}\\
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/100_2333.eps}
+\end{minipage}
+\begin{minipage}{0.5cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/00-1-0-10_2333.eps}
+\end{minipage}
+\begin{minipage}{0.5cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/0-10_2333.eps}
+\end{minipage}
+\end{minipage}\\
+\begin{minipage}{15cm}
+\underline{\hkl<0 0 -1> $\rightarrow$ \hkl<0 -1 0> (in place)}\\
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/100_2333.eps}
+\end{minipage}
+\begin{minipage}{0.5cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/00-1_ip0-10_2333.eps}
+\end{minipage}
+\begin{minipage}{0.5cm}
+$\rightarrow$
+\end{minipage}
+\begin{minipage}{4.5cm}
+\includegraphics[width=4.5cm]{c_pd_vasp/0-10_ip_2333.eps}
+\end{minipage}
+\end{minipage}
+\end{center}
+\caption{Migration pathways of the carbon \hkl<1 0 0> interstitial dumbbell in silicon.}
+\label{img:defects:c_mig_path}
+\end{figure}
+Three different migration paths are accounted in this work, which are shown in figure \ref{img:defects:c_mig_path}.
+The first migration investigated is a transition of a \hkl<0 0 -1> into a \hkl<0 0 1> dumbbell interstitial configuration.
+During this migration the carbon atom is changing its silicon dumbbell partner.
+The new partner is the one located at $\frac{a}{4}\hkl<1 1 -1>$ relative to the initial one.
+Two of the three bonds to the next neighboured silicon atoms are preserved while the breaking of the third bond and the accompanying formation of a new bond is observed.
+The carbon atom resides in the \hkl(1 1 0) plane.
+This transition involves an intermediate bond-centerd configuration.
+Results discussed in \ref{subsection:bc} indicate, that the bond-ceneterd configuration is a real local minimum.
+Thus, the \hkl<0 0 -1> to \hkl<0 0 1> migration can be thought of a two-step mechanism in which the intermediate bond-cenetered configuration constitutes a metastable configuration.
+Due to symmetry it is enough to consider the transition from the bond-centered to the \hkl<1 0 0> configuration or vice versa.
+In the second path, the carbon atom is changing its silicon partner atom as in path one.
+However, the trajectory of the carbon atom is no longer proceeding in the \hkl(1 1 0) plane.
+The orientation of the new dumbbell configuration is transformed from \hkl<0 0 -1> to \hkl<0 -1 0>.
+Again one bond is broken while another one is formed.
+As a last migration path, the defect is only changing its orientation.
+Thus, it is not responsible for long-range migration.
+The silicon dumbbell partner remains the same.
+The bond to the face-centered silicon atom at the bottom of the unit cell breaks and a new one is formed to the face-centered atom at the forefront of the unit cell.
+Todo: \hkl<1 1 0> to \hkl<1 0 0> and bond-centerd configuration (in progress).
+Todo: \hkl<1 1 0> to \hkl<0 -1 0> (rotation of the DB, in progress).
+Todo: Comparison with classical potential simulations or explanation to only focus on ab initio calculations.
+
+Since the starting and final structure, which are both local minima of the potential energy surface, are known, the aim is to find the minimum energy path from one local minimum to the other one.
+One method to find a minimum energy path is to move the diffusing atom stepwise from the starting to the final position and only allow relaxation in the plane perpendicular to the direction of the vector connecting its starting and final position.
+No constraints are applied to the remaining atoms in order to allow relaxation of the surrounding lattice.
+To prevent the remaining lattice to migrate according to the displacement of the defect an atom far away from the defect region is fixed in all three coordinate directions.
+However, it turned out, that this method tremendously failed applying it to the present migration pathways and structures.
+Abrupt changes in structure and free energy occured among relaxed structures of two successive displacement steps.
+For some structures even the expected final configurations were never obtained.
+Thus, the method mentioned above was adjusted adding further constraints in order to obtain smooth transitions, either in energy as well as structure is concerned.
+In this new method all atoms are stepwise displaced towards their final positions.
+Relaxation of each individual atom is only allowed in the plane perpendicular to the last individual displacement vector.
+The modifications used to add this feature to the VASP code and a short instruction on how to use it can be found in appendix \ref{app:patch_vasp}.
+Due to these constraints obtained activation energies can effectively be higher.
+Todo: To refine the migration barrier one has to find the saddle point structure and recalculate the free energy of this configuration with a reduced set of constraints.
+
+\begin{figure}[h]
+\begin{center}
+\includegraphics[width=13cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[1.5cm]
+\begin{picture}(0,0)(150,0)
+\includegraphics[width=2.5cm]{vasp_mig/00-1.eps}
+\end{picture}
+\begin{picture}(0,0)(-10,0)
+\includegraphics[width=2.5cm]{vasp_mig/bc_00-1_sp.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,0)
+\includegraphics[width=2.5cm]{vasp_mig/bc.eps}
+\end{picture}
+\begin{picture}(0,0)(25,20)
+\includegraphics[width=2.5cm]{110_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(200,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\caption[Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to bond-centered (right) transition.]{Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to bond-centered (right) transition. Bonds of the carbon atoms are illustrated by blue lines.}
+\label{fig:defects:00-1_001_mig}
+\end{figure}
+In figure \ref{fig:defects:00-1_001_mig} results of the \hkl<0 0 -1> to \hkl<0 0 1> migration fully described by the migration of the \hkl<0 0 -1> dumbbell to the bond-ceneterd configuration is displayed.
+To reach the bond-centered configuration, which is 0.94 eV higher in energy than the \hkl<0 0 -1> dumbbell configuration, an energy barrier of approximately 1.2 eV, given by the saddle point structure at a displacement of 60 \%, has to be passed.
+This amount of energy is needed to break the bond of the carbon atom to the silicon atom at the bottom left.
+In a second process 0.25 eV of energy are needed for the system to revert into a \hkl<1 0 0> configuration.
+
+\begin{figure}[h]
+\begin{center}
+\includegraphics[width=13cm]{vasp_mig/00-1_0-10_nosym_sp_fullct.ps}\\[1.6cm]
+\begin{picture}(0,0)(140,0)
+\includegraphics[width=2.5cm]{vasp_mig/00-1_a.eps}
+\end{picture}
+\begin{picture}(0,0)(20,0)
+\includegraphics[width=2.5cm]{vasp_mig/00-1_0-10_sp.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,0)
+\includegraphics[width=2.5cm]{vasp_mig/0-10.eps}
+\end{picture}
+\begin{picture}(0,0)(25,20)
+\includegraphics[width=2.5cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(200,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\caption[Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to the \hkl<0 -1 0> dumbbell (right) transition.]{Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to the \hkl<0 -1 0> dumbbell (right) transition. Bonds of the carbon atoms are illustrated by blue lines.}
+\label{fig:defects:00-1_0-10_mig}
+\end{figure}
+Figure \ref{fig:defects:00-1_0-10_mig} shows the migration barrier and structures of the \hkl<0 0 -1> to \hkl<0 -1 0> dumbbell transition.
+The resulting migration barrier of approximately 0.9 eV is very close to the experimentally obtained values of 0.73 \cite{song90} and 0.87 eV \cite{tipping87}.
 
-Three different migration paths are accounted in this work.
-In the first path the carbon atom 
+\begin{figure}[h]
+\begin{center}
+\includegraphics[width=13cm]{vasp_mig/00-1_ip0-10_nosym_sp_fullct.ps}\\[1.8cm]
+\begin{picture}(0,0)(140,0)
+\includegraphics[width=2.2cm]{vasp_mig/00-1_b.eps}
+\end{picture}
+\begin{picture}(0,0)(20,0)
+\includegraphics[width=2.2cm]{vasp_mig/00-1_ip0-10_sp.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,0)
+\includegraphics[width=2.2cm]{vasp_mig/0-10_b.eps}
+\end{picture}
+\begin{picture}(0,0)(25,20)
+\includegraphics[width=2.5cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(200,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\caption[Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to the \hkl<0 -1 0> dumbbell (right) transition in place.]{Migration barrier and structures of the \hkl<0 0 -1> dumbbell (left) to the \hkl<0 -1 0> dumbbell (right) transition in place. Bonds of the carbon atoms are illustrated by blue lines.}
+\label{fig:defects:00-1_0-10_ip_mig}
+\end{figure}
+The third migration path in which the dumbbell is changing its orientation is shown in figure \ref{fig:defects:00-1_0-10_ip_mig}.
+An energy barrier of roughly 1.2 eV is observed.
+Experimentally measured activation energies for reorientation range from 0.77 eV to 0.88 eV \cite{watkins76,song90}.
+Thus, this pathway is more likely to be composed of two consecutive steps of the second path.
 
-Results and comparison with diffusion experiments.
+Since the activation energy of the first and last migration path is much greater than the experimental value, the second path is identified to be responsible as a migration path for the most likely carbon interstitial in silicon explaining both, annealing and reorientation experiments.
+The activation energy of roughly 0.9 eV nicely compares to experimental values.
+The theoretical description performed in this work is improved compared to a former study \cite{capaz94}, which underestimates the experimental value by 35 \%.
+In addition the bond-ceneterd configuration, for which spin polarized calculations are necessary, is found to be a real local minimum instead of a saddle point configuration.
 
 \section{Combination of point defects}
 
+\begin{figure}[h]
+\begin{center}
+\begin{minipage}{7.5cm}
+\includegraphics[width=7cm]{comb_pos.eps}
+\end{minipage}
+\begin{minipage}{6.0cm}
+\underline{Positions given in $a_{\text{Si}}$}\\[0.3cm]
+Initial interstitial: $\frac{1}{4}\hkl<1 1 1>$\\
+Relative silicon neighbour positions:
+\begin{enumerate}
+ \item $\frac{1}{4}\hkl<1 1 -1>$, $\frac{1}{4}\hkl<-1 -1 -1>$ ()
+ \item $\frac{1}{2}\hkl<1 0 1>$, $\frac{1}{2}\hkl<0 1 -1>$,\\[0.2cm]
+       $\frac{1}{2}\hkl<0 -1 -1>$, $\frac{1}{2}\hkl<-1 0 -1>$
+ \item $\frac{1}{4}\hkl<1 -1 1>$, $\frac{1}{4}\hkl<-1 1 1>$
+ \item $\frac{1}{4}\hkl<-1 1 -3>$, $\frac{1}{4}\hkl<1 -1 -3>$
+ \item $\frac{1}{2}\hkl<-1 -1 0>$, $\frac{1}{2}\hkl<1 1 0>$
+\end{enumerate}
+\end{minipage}\\
+\begin{picture}(0,0)(190,20)
+\includegraphics[width=2.3cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(220,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\caption[\hkl<0 0 -1> dumbbell interstitial defect and positions of next neighboured silicon atoms used for the second defect.]{\hkl<0 0 -1> dumbbell interstitial defect and positions of next neighboured silicon atoms used for the second defect. Two possibilities exist for red numbered atoms and four possibilities exist for blue numbered atoms.}
+\label{fig:defects:pos_of_comb}
+\end{figure}
+The structural and energetic properties of combinations of point defects are investigated in the following.
+The focus is on combinations of the \hkl<0 0 -1> dumbbell interstitial with a second defect.
+The second defect is either another \hkl<1 0 0>-type interstitial occupying different orientations, a vacany or a substitutional carbon atom.
+Several distances of the two defects are examined.
+Investigations are restricted to quantum-mechanical calculations.
+Figure \ref{fig:defects:pos_of_comb} shows the initial \hkl<0 0 -1> dumbbell interstitial defect and the positions of the next neighboured silicon atoms used for the second defect.
+
+
+