alpha version of intro + sic review
[lectures/latex.git] / posic / thesis / defects.tex
index 522470d..d6e52f1 100644 (file)
@@ -1,4 +1,5 @@
 \chapter{Point defects in silicon}
 \chapter{Point defects in silicon}
+\label{chapter:defects}
 
 Given the conversion mechnism of SiC in crystalline silicon introduced in section \ref{section:assumed_prec} the understanding of carbon and silicon interstitial point defects in c-Si is of great interest.
 Both types of defects are examined in the following both by classical potential as well as density functional theory calculations.
 
 Given the conversion mechnism of SiC in crystalline silicon introduced in section \ref{section:assumed_prec} the understanding of carbon and silicon interstitial point defects in c-Si is of great interest.
 Both types of defects are examined in the following both by classical potential as well as density functional theory calculations.
@@ -840,7 +841,7 @@ The \hkl<1 1 0> configuration seems to play a decisive role in all migration pat
 In the first migration path it is the configuration resulting from further relaxation of the rather unstable bond-centered configuration, which is fixed to be a transition point in the migration calculations.
 The last two  pathways show configurations almost identical to the \hkl<1 1 0> configuration, which constitute a local minimum within the pathway.
 Thus, migration pathways with the \hkl<1 1 0> C-Si dumbbell interstitial configuration as a starting or final configuration are further investigated.
 In the first migration path it is the configuration resulting from further relaxation of the rather unstable bond-centered configuration, which is fixed to be a transition point in the migration calculations.
 The last two  pathways show configurations almost identical to the \hkl<1 1 0> configuration, which constitute a local minimum within the pathway.
 Thus, migration pathways with the \hkl<1 1 0> C-Si dumbbell interstitial configuration as a starting or final configuration are further investigated.
-\begin{figure}[ht!]
+\begin{figure}[!ht]
 \begin{center}
 \includegraphics[width=13cm]{110_mig.ps}
 \end{center}
 \begin{center}
 \includegraphics[width=13cm]{110_mig.ps}
 \end{center}
@@ -1251,7 +1252,7 @@ Thus, combinations of substitutional C and an additional Si self-interstitial ar
 The ground state of a single Si self-interstitial was found to be the Si \hkl<1 1 0> self-interstitial configuration.
 For the follwoing study the same type of self-interstitial is assumed to provide the energetically most favorable configuration in combination with substitutional C.
 
 The ground state of a single Si self-interstitial was found to be the Si \hkl<1 1 0> self-interstitial configuration.
 For the follwoing study the same type of self-interstitial is assumed to provide the energetically most favorable configuration in combination with substitutional C.
 
-\begin{table}[ht!]
+\begin{table}[!ht]
 \begin{center}
 \begin{tabular}{l c c c c c c}
 \hline
 \begin{center}
 \begin{tabular}{l c c c c c c}
 \hline
@@ -1271,7 +1272,7 @@ C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
 \caption{Equivalent configurations of \hkl<1 1 0>-type Si self-interstitials created at position I of figure \ref{fig:defects:pos_of_comb} and substitutional C created at positions 1 to 5.}
 \label{tab:defects:comb_csub_si110}
 \end{table}
 \caption{Equivalent configurations of \hkl<1 1 0>-type Si self-interstitials created at position I of figure \ref{fig:defects:pos_of_comb} and substitutional C created at positions 1 to 5.}
 \label{tab:defects:comb_csub_si110}
 \end{table}
-\begin{table}[ht!]
+\begin{table}[!ht]
 \begin{center}
 \begin{tabular}{l c c c c c c c c c c}
 \hline
 \begin{center}
 \begin{tabular}{l c c c c c c c c c c}
 \hline