sec checkin
[lectures/latex.git] / posic / thesis / defects.tex
index 756c45b..d98c843 100644 (file)
@@ -1,18 +1,18 @@
 \chapter{Point defects in silicon}
 
-Given the conversion mechnism of SiC in crystalline silicon introduced in \ref{section:assumed_prec} the understanding of carbon and silicon interstitial point defects in c-Si is of great interest.
+Given the conversion mechnism of SiC in crystalline silicon introduced in section \ref{section:assumed_prec} the understanding of carbon and silicon interstitial point defects in c-Si is of great interest.
 Both types of defects are examined in the following both by classical potential as well as density functional theory calculations.
 
 In case of the classical potential calculations a simulation volume of nine silicon lattice constants in each direction is used.
 Calculations are performed in an isothermal-isobaric NPT ensemble.
 Coupling to the heat bath is achieved by the Berendsen thermostat with a time constant of 100 fs.
 The temperature is set to zero Kelvin.
-Pressure is controlled by a Berendsen barostat again using a time constant of 100 fs and a bulk modulus of 100 GPa for silicon.
+Pressure is controlled by a Berendsen barostat \cite{berendsen84} again using a time constant of 100 fs and a bulk modulus of 100 GPa for silicon.
 To exclude surface effects periodic boundary conditions are applied.
 
 Due to the restrictions in computer time three silicon lattice constants in each direction are considered sufficiently large enough for DFT calculations.
 The ions are relaxed by a conjugate gradient method.
-The cell volume and shape is allowed to change using the pressure control algorithm of Parinello and Rahman \cite{}.
+The cell volume and shape is allowed to change using the pressure control algorithm of Parrinello and Rahman \cite{parrinello81}.
 Periodic boundary conditions in each direction are applied.
 All point defects are calculated for the neutral charge state.
 
@@ -162,11 +162,11 @@ $E_{\text{f}}=3.13\text{ eV}$\\
 \label{fig:defects:conf}
 \end{figure}
 
-There are differences between the various results of the quantum-mechanical calculations but the consesus view is that the \hkl<1 1 0> dumbbell followed by the hexagonal and tetrahedral defect is the lowest in energy.
+There are differences between the various results of the quantum-mechanical calculations but the consensus view is that the \hkl<1 1 0> dumbbell followed by the hexagonal and tetrahedral defect is the lowest in energy.
 This is nicely reproduced by the DFT calculations performed in this work.
 
 It has turned out to be very difficult to capture the results of quantum-mechanical calculations in analytical potential models.
-Among the established analytical potentials only the EDIP \cite{} and Stillinger-Weber \cite{} potential reproduce the correct order in energy of the defects.
+Among the established analytical potentials only the EDIP \cite{bazant97,justo98} and Stillinger-Weber \cite{stillinger85} potential reproduce the correct order in energy of the defects.
 However, these potenitals show shortcomings concerning the description of other physical properties and are unable to describe the C-C and C-Si interaction.
 In fact the Erhard/Albe potential calculations favor the tetrahedral defect configuration.
 The hexagonal configuration is not stable opposed to results of the authors of the potential \cite{albe_sic_pot}.
@@ -183,12 +183,21 @@ In figure \ref{fig:defects:kin_si_hex} the relaxation process is shown on the ba
 \caption{Kinetic energy plot of the relaxation process of the hexagonal silicon self-interstitial defect simulation using the Erhard/Albe classical potential.}
 \label{fig:defects:kin_si_hex}
 \end{figure}
-To exclude failures in the implementation of the potential or the MD code itself the hexagonal defect structure was double-checked with the PARCAS MD code \cite{}.
+To exclude failures in the implementation of the potential or the MD code itself the hexagonal defect structure was double-checked with the PARCAS MD code \cite{parcas_md}.
 The same type of interstitial arises using random insertions.
 In addition, variations exist in which the displacement is only along two \hkl<1 0 0> axes ($E_\text{f}=3.8\text{ eV}$) or along a single \hkl<1 0 0> axes ($E_\text{f}=3.6\text{ eV}$) successively approximating the tetdrahedral configuration and formation energy.
 The existence of these local minima located near the tetrahedral configuration seems to be an artifact of the analytical potential without physical authenticity revealing basic problems of analytical potential models for describing defect structures.
 However, the energy barrier is small.
-{\color{red}Todo: Check!}
+\begin{figure}[th]
+\begin{center}
+\includegraphics[width=12cm]{nhex_tet.ps}
+\end{center}
+\caption{Migration barrier of the tetrahedral Si self-interstitial slightly displaced along all three coordinate axes into the exact tetrahedral configuration using classical potential calculations.}
+\label{fig:defects:nhex_tet_mig}
+\end{figure}
+This is exemplified in figure \ref{fig:defects:nhex_tet_mig}, which shows the change in potential energy during the migration of the interstitial displaced along all three coordinate axes into the tetrahedral configuration.
+The technique used to obtain the migration data is explained in a later section (\ref{subsection:100mig}).
+The barrier is less than 0.2 eV.
 Hence these artifacts should have a negligent influence in finite temperature simulations.
 
 The bond-centered configuration is unstable and the \hkl<1 0 0> dumbbell interstitial is the most unfavorable configuration for both, the Erhard/Albe and VASP calculations.
@@ -464,7 +473,7 @@ This is supported by the charge density isosurface and the Kohn-Sham levels in f
 The blue torus, reinforcing the assumption of the p orbital, illustrates the resulting spin up electron density.
 In addition, the energy level diagram shows a net amount of two spin up electrons.
 
-\section[Migration of the carbon \hkl<1 0 0> interstitial]{\boldmath Migration of the carbon \hkl<1 0 0> interstitial}
+\section[Migration of the carbon \hkl<1 0 0> interstitial]{Migration of the carbon \boldmath\hkl<1 0 0> interstitial}
 \label{subsection:100mig}
 
 In the following the problem of interstitial carbon migration in silicon is considered.
@@ -548,7 +557,6 @@ As a last migration path, the defect is only changing its orientation.
 Thus, it is not responsible for long-range migration.
 The silicon dumbbell partner remains the same.
 The bond to the face-centered silicon atom at the bottom of the unit cell breaks and a new one is formed to the face-centered atom at the forefront of the unit cell.
-{\color{red}Todo: Comparison with classical potential simulations or explanation to only focus on ab initio calculations.}
 
 Since the starting and final structure, which are both local minima of the potential energy surface, are known, the aim is to find the minimum energy path from one local minimum to the other one.
 One method to find a minimum energy path is to move the diffusing atom stepwise from the starting to the final position and only allow relaxation in the plane perpendicular to the direction of the vector connecting its starting and final position.
@@ -564,6 +572,12 @@ The modifications used to add this feature to the VASP code and a short instruct
 Due to these constraints obtained activation energies can effectively be higher.
 {\color{red}Todo: To refine the migration barrier one has to find the saddle point structure and recalculate the free energy of this configuration with a reduced set of constraints.}
 
+\subsection{Migration barriers obtained by quantum-mechanical calculations}
+
+In the following migration barriers are investigated using quantum-mechanical calculations.
+The amount of simulated atoms is the same as for the investigation of the point defect structures.
+Due to the time necessary for computing only ten displacement steps are used.
+
 \begin{figure}[t!h!]
 \begin{center}
 \includegraphics[width=13cm]{im_00-1_nosym_sp_fullct_thesis.ps}\\[1.5cm]
@@ -643,18 +657,205 @@ An energy barrier of roughly 1.2 eV is observed.
 Experimentally measured activation energies for reorientation range from 0.77 eV to 0.88 eV \cite{watkins76,song90}.
 Thus, this pathway is more likely to be composed of two consecutive steps of the second path.
 
+{\color{red}Todo: Stress out that this is a promising result excellently matching experimental observations.}
 Since the activation energy of the first and last migration path is much greater than the experimental value, the second path is identified to be responsible as a migration path for the most likely carbon interstitial in silicon explaining both, annealing and reorientation experiments.
 The activation energy of roughly 0.9 eV nicely compares to experimental values.
 The theoretical description performed in this work is improved compared to a former study \cite{capaz94}, which underestimates the experimental value by 35 \%.
 In addition the bond-ceneterd configuration, for which spin polarized calculations are necessary, is found to be a real local minimum instead of a saddle point configuration.
 
+\begin{figure}[th!]
+\begin{center}
+\includegraphics[width=13cm]{vasp_mig/110_mig_vasp.ps}
+%\begin{picture}(0,0)(140,0)
+%\includegraphics[width=2.2cm]{vasp_mig/00-1_b.eps}
+%\end{picture}
+%\begin{picture}(0,0)(20,0)
+%\includegraphics[width=2.2cm]{vasp_mig/00-1_ip0-10_sp.eps}
+%\end{picture}
+%\begin{picture}(0,0)(-120,0)
+%\includegraphics[width=2.2cm]{vasp_mig/0-10_b.eps}
+%\end{picture}
+\end{center}
+\caption{Migration barriers of the \hkl<1 1 0> dumbbell to bond-centered (red), \hkl<0 0 -1> (green) and \hkl<0 -1 0> (in place, blue) C-Si dumbbell transition.}
+\label{fig:defects:110_mig_vasp}
+\end{figure}
+Further migration pathways in particular those occupying other defect configurations than the \hkl<1 0 0>-type either as a transition state or a final or starting configuration are totally conceivable.
+This is investigated in the following in order to find possible migration pathways that have an activation energy lower than the ones found up to now.
+The next energetically favorable defect configuration is the \hkl<1 1 0> C-Si dumbbell interstitial.
+Figure \ref{fig:defects:110_mig_vasp} shows the migration barrier of the \hkl<1 1 0> C-Si dumbbell to the bond-centered, \hkl<0 0 -1> and \hkl<0 -1 0> (in place) transition.
+Indeed less than 0.7 eV are necessary to turn a \hkl<0 -1 0>- to a \hkl<1 1 0>-type C-Si dumbbell interstitial.
+This transition is carried out in place, that is the Si dumbbell pair is not changed and both, the Si and C atom share the initial lattice site.
+Thus, this transition does not contribute to long-range diffusion.
+Once the C atom resides in the \hkl<1 1 0> interstitial configuration it can migrate into the bond-centered configuration by employing approximately 0.95 eV of activation energy, which is only slightly higher than the activation energy needed for the \hkl<0 0 -1> to \hkl<0 -1 0> pathway shown in figure \ref{fig:defects:00-1_0-10_mig}.
+As already known from the migration of the \hkl<0 0 -1> to the bond-centered configuration as discussed in figure \ref{fig:defects:00-1_001_mig} another 0.25 eV are needed to turn back from the bond-centered to a \hkl<1 0 0>-type interstitial.
+However, due to the fact that this migration consists of three single transitions with the second one having an activation energy slightly higher than observed for the direct transition it is considered very unlikely to occur.
+The migration barrier of the \hkl<1 1 0> to \hkl<0 0 -1> transition, in which the C atom is changing its Si partner and, thus, moving to the neighboured lattice site is approximately 1.35 eV.
+During this transition the C atom is escaping the \hkl(1 1 0) plane approaching the final configuration on a curved path.
+This barrier is much higher than the ones found previously, which again make this transition very unlikely to occur.
+For this reason the assumption that C diffusion and reorientation is achieved by transitions of the type presented in figure \ref{fig:defects:00-1_0-10_mig} is reinforced.
+
+As mentioned earlier the procedure to obtain the migration barriers differs from the usually applied procedure in two ways.
+Firstly constraints to move along the displacement direction are applied on all atoms instead of solely constraining the diffusing atom.
+Secondly the constrainted directions are not kept constant to the initial displacement direction.
+Instead they are updated for every displacement step.
+These modifications to the usual procedure are applied to avoid abrupt changes in structure and free energy on the one hand and to make sure the expected final configuration is reached on the other hand.
+Due to applying updated constraints on all atoms the obtained migration barriers and pathes might be overestimated and misguided.
+To reinforce the applicability of the employed technique the obtained activation energies and migration pathes for the \hkl<0 0 -1> to \hkl<0 -1 0> transition are compared to two further migration calculations, which do not update the constrainted direction and which only apply updated constraints on three selected atoms, that is the diffusing C atom and the Si dumbbell pair in the initial and final configuration.
+Results are presented in figure \ref{fig:defects:00-1_0-10_cmp}.
+\begin{figure}[th!]
+\begin{center}
+\includegraphics[width=13cm]{vasp_mig/00-1_0-10_nosym_sp_cmp.ps}
+\end{center}
+\caption[Comparison of three different techniques for obtaining migration barriers and pathways applied to the \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition.]{Comparison of three different techniques for obtaining migration barriers and pathways applied to the \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition.}
+\label{fig:defects:00-1_0-10_cmp}
+\end{figure}
+The method without updating the constraints but still applying them to all atoms shows a delayed crossing of the saddle point.
+This is understandable since the update results in a more aggressive advance towards the final configuration.
+In any case the barrier obtained is slightly higher, which means that it does not constitute an energetically more favorable pathway.
+The method in which the constraints are only applied to the diffusing C atom and two Si atoms, ... {\color{red}in progress} ...
+
+\subsection{Migration barriers obtained by classical potential calculations}
+
+The same method for obtaining migration barriers and the same suggested pathways are applied to calculations employing the classical Erhard/Albe potential.
+Since the evaluation of the classical potential and force is less computationally intensive higher amounts of steps can be used.
+The time constant $\tau$ for the Berendsen thermostat is set to 1 fs in order to have direct velocity scaling and with the temperature set to zero Kelvin perform a steepest descent minimazation to drive the system into a local minimum.
+However, in some cases  a time constant of 100 fs resuls in lower barriers and, thus, is shown whenever appropriate.
+
+\begin{figure}[th!]
+\begin{center}
+\includegraphics[width=13cm]{bc_00-1.ps}\\[5.6cm]
+\begin{pspicture}(0,0)(0,0)
+\psframe[linecolor=red,fillstyle=none](-7,2.7)(7.2,6)
+\end{pspicture}
+\begin{picture}(0,0)(140,-100)
+\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_00.eps}
+\end{picture}
+\begin{picture}(0,0)(10,-100)
+\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_01.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,-100)
+\includegraphics[width=2.4cm]{albe_mig/bc_00-1_red_02.eps}
+\end{picture}
+\begin{picture}(0,0)(25,-80)
+\includegraphics[width=2.5cm]{110_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(215,-100)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}\\
+\begin{pspicture}(0,0)(0,0)
+\psframe[linecolor=blue,fillstyle=none](-7,-0.5)(7.2,2.8)
+\end{pspicture}
+\begin{picture}(0,0)(160,-10)
+\includegraphics[width=2.2cm]{albe_mig/bc_00-1_01.eps}
+\end{picture}
+\begin{picture}(0,0)(100,-10)
+\includegraphics[width=2.2cm]{albe_mig/bc_00-1_02.eps}
+\end{picture}
+\begin{picture}(0,0)(10,-10)
+\includegraphics[width=2.2cm]{albe_mig/bc_00-1_03.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,-10)
+\includegraphics[width=2.2cm]{albe_mig/bc_00-1_04.eps}
+\end{picture}
+\begin{picture}(0,0)(25,10)
+\includegraphics[width=2.5cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(215,-10)
+\includegraphics[height=2.2cm]{010_arrow.eps}
+\end{picture}
+\end{center}
+\caption{Migration barrier and structures of the bond-centered to \hkl<0 0 -1> dumbbell transition using the classical Erhard/Albe potential.}
+\label{fig:defects:cp_bc_00-1_mig}
+% red: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_bc_00-1_s20 -nll -0.56 -0.56 -0.7 -fur 0.2 0.2 0.0 -c 0.75 -1.25 -0.25 -L -0.25 -0.25 -0.25 -r 0.6 -B 0.1
+% blue: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_bc_00-1_s20_tr100/ -nll -0.56 -0.56 -0.7 -fur 0.2 0.2 0.0 -c 0.0 -0.25 1.0 -L 0.0 -0.25 -0.25 -r 0.6 -B 0.1
+\end{figure}
+Figure \ref{fig:defects:cp_bc_00-1_mig} shows the migration barrier and corresponding structures of the bond-centered to \hkl<0 0 -1> dumbbell transition.
+Since the bond-centered configuration is unstable relaxing into the \hkl<1 1 0> C-Si dumbbell interstitial configuration within this potential the low kinetic energy state is used as a starting configuration.
+Depending on the time constant activation energies of 2.4 eV and 2.2 eV respectively are obtained.
+The migration path obtained by simulations with a time constant of 1 fs remains in the \hkl(1 1 0) plane.
+Using 100 fs as a time constant the C atom breaks out of the \hkl(1 1 0) plane already at the beginning of the migration accompanied by a reduction in energy.
+The energy barrier of this path is 0.2 eV lower in energy than the direct migration within the \hkl(1 1 0) plane.
+However, the investigated pathways cover an activation energy approximately twice as high as the one obtained by quantum-mechanical calculations.
+For the entire transition of the \hkl<0 0 -1> into the \hkl<0 0 1> configuration by passing the bond-centered configuration an additional activation energy of 0.5 eV is necessary to escape from the bond-centered and reach the \hkl<0 0 1> configuration.
+
+\begin{figure}[th!]
+\begin{center}
+\includegraphics[width=13cm]{00-1_0-10.ps}\\[2.4cm]
+\begin{pspicture}(0,0)(0,0)
+\psframe[linecolor=red,fillstyle=none](-6,-0.5)(7.2,2.8)
+\end{pspicture}
+\begin{picture}(0,0)(130,-10)
+\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_00.eps}
+\end{picture}
+\begin{picture}(0,0)(0,-10)
+\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_min.eps}
+\end{picture}
+\begin{picture}(0,0)(-120,-10)
+\includegraphics[width=2.2cm]{albe_mig/00-1_0-10_red_03.eps}
+\end{picture}
+\begin{picture}(0,0)(25,10)
+\includegraphics[width=2.5cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(185,-10)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\caption{Migration barrier and structures of the \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition using the classical Erhard/Albe potential.}
+% red: ./visualize -w 640 -h 480 -d saves/c_in_si_mig_00-1_0-10_s20 -nll -0.56 -0.56 -0.8 -fur 0.3 0.2 0 -c -0.125 -1.7 0.7 -L -0.125 -0.25 -0.25 -r 0.6 -B 0.1
+\label{fig:defects:cp_00-1_0-10_mig}
+\end{figure}
+\begin{figure}[th!]
+\begin{center}
+\includegraphics[width=13cm]{00-1_ip0-10.ps}
+\end{center}
+\caption{Migration barrier of the \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition in place using the classical Erhard/Albe potential.}
+\label{fig:defects:cp_00-1_ip0-10_mig}
+\end{figure}
+Figure \ref{fig:defects:cp_00-1_0-10_mig} and \ref{fig:defects:cp_00-1_ip0-10_mig} show the migration barriers of \hkl<0 0 -1> to \hkl<0 -1 0> C-Si dumbbell transition, with a transition of the C atom to the neighboured lattice site in the first case and a reorientation within the same lattice site in the latter case.
+Both pathways look similar.
+A local minimum exists inbetween two peaks of the graph.
+The corresponding configuration, which is illustrated for the migration simulation with a time constant of 1 fs, looks similar to the \hkl<1 1 0> configuration.
+Indeed, this configuration is obtained by relaxation simulations without constraints of configurations near the minimum.
+Activation energies of roughly 2.8 eV and 2.7 eV respectively are needed for migration.
+
+The \hkl<1 1 0> configuration seems to play a decisive role in all migration pathways.
+In the first migration path it is the configuration resulting from further relaxation of the rather unstable bond-centered configuration, which is fixed to be a transition point in the migration calculations.
+The last two  pathways show configurations almost identical to the \hkl<1 1 0> configuration, which constitute a local minimum within the pathway.
+Thus, migration pathways with the \hkl<1 1 0> C-Si dumbbell interstitial configuration as a starting or final configuration are further investigated.
+\begin{figure}[ht!]
+\begin{center}
+\includegraphics[width=13cm]{110_mig.ps}
+\end{center}
+\caption[Migration barriers of the \hkl<1 1 0> dumbbell to bond-centered (blue), \hkl<0 0 -1> (green) and \hkl<0 -1 0> (in place, red) C-Si dumbbell transition.]{Migration barriers of the \hkl<1 1 0> dumbbell to bond-centered (blue), \hkl<0 0 -1> (green) and \hkl<0 -1 0> (in place, red) C-Si dumbbell transition. Solid lines show results for a time constant of 1 fs and dashed lines correspond to simulations employing a time constant of 100 fs.}
+\label{fig:defects:110_mig}
+\end{figure}
+Figure \ref{fig:defects:110_mig} shows migration barriers of the C-Si \hkl<1 1 0> dumbbell to  \hkl<0 0 -1>, \hkl<0 -1 0> (in place) and bond-centered configuration.
+As expected there is no maximum for the transition into the bond-centered configuration.
+As mentioned earlier the bond-centered configuration itself constitutes a saddle point configuration relaxing into the energetically more favorable \hkl<1 1 0> configuration.
+An activation energy of 2.2 eV is necessary to reorientate the \hkl<0 0 -1> dumbbell configuration into the \hkl<1 1 0> configuration, which is 1.3 eV higher in energy.
+Residing in this state another 0.9 eV is enough to make the C atom form a \hkl<0 0 -1> dumbbell configuration with the Si atom of the neighboured lattice site.
+In contrast to quantum-mechanical calculations, in which the direct transition is the energetically most favorable transition and the transition composed of the intermmediate migration steps is very unlikely to occur the just presented pathway is much more supposable in classical potential simulations, since the energetically most favorable transition found so far is also composed of two migration steps with activation energies of 2.2 eV and 0.5 eV.
+
+Although classical potential simulations reproduce the order in energy of the \hkl<1 0 0> and \hkl<1 1 0> C-Si dumbbell interstitial configurations as obtained by more accurate quantum-mechanical calculations the obtained migration pathways and resulting activation energies differ to a great extent.
+On the one hand the most favorable pathways differ.
+On the other hand the activation energies obtained by classical potential simulations are tremendously overestimated by a factor of almost 2.4.
+Thus, atomic diffusion is wrongly described in the classical potential approach.
+The probability of already rare diffusion events is further decreased for this reason.
+Since agglomeration of C and diffusion of Si self-interstitials are an important part of the proposed SiC precipitation mechanism a problem arises, which is formulated and discussed in more detail in section \ref{subsection:md:limit}.
+
 \section{Combination of point defects}
 
-The structural and energetic properties of combinations of point defects are investigated in the following.
-The focus is on combinations of the \hkl<0 0 -1> dumbbell interstitial with a second defect.
+The structural and energetic properties of combinations of point defects are examined in the following.
+Investigations are restricted to quantum-mechanical calculations for two reasons.
+First of all, as mentioned in the last section, they are far more accurate.
+Secondly, the restrictions in size and simulation time for this type of calculation due to limited computational resources, necessitate to map the complex precipitation mechanism to a more compact and simplified modelling.
+The investigations of defect combinations approached in the following are still feasible within the available computational power and allow to draw conclusions on some important ongoing mechanisms during SiC precipitation.
+
+\subsection[Combinations with a C-Si \hkl<1 0 0>-type interstitial]{\boldmath Combinations with a C-Si \hkl<1 0 0>-type interstitial}
+
+This section focuses on combinations of the \hkl<0 0 -1> dumbbell interstitial with a second defect.
 The second defect is either another \hkl<1 0 0>-type interstitial occupying different orientations, a vacany or a substitutional carbon atom.
 Several distances of the two defects are examined.
-Investigations are restricted to quantum-mechanical calculations.
 
 \begin{figure}[th]
 \begin{center}
@@ -961,9 +1162,9 @@ In both cases, silicon atom number 1 is displaced in such a way, that the bond t
 In case of \ref{fig:defects:comb_db_04} a) the carbon atoms form a bond with a distance of 1.5 \AA, which is close to the C-C distance expected in diamond or graphit.
 Both carbon atoms are highly attracted by each other resulting in large displacements and high strain energy in the surrounding.
 A binding energy of 0.26 eV is observed.
-Substitutional carbon at positions 2, 3 and 5 are the energetically most favorable configurations and constitute promising starting points for SiC precipitation.
+Substitutional carbon at positions 2, 3 and 4 are the energetically most favorable configurations and constitute promising starting points for SiC precipitation.
 On the one hand, C-C distances around 3.1 \AA{} exist for substitution positions 2 and 3, which are close to the C-C distance expected in silicon carbide.
-On the other hand stretched silicon carbide is obtained by the transition of the silicon dumbbell atom into a silicon self-interstitial located somewhere in the silicon host matrix and th etransition of the carbon dumbbell atom into another substitutional atom occupying the dumbbell lattice site.
+On the other hand stretched silicon carbide is obtained by the transition of the silicon dumbbell atom into a silicon self-interstitial located somewhere in the silicon host matrix and thtransition of the carbon dumbbell atom into another substitutional atom occupying the dumbbell lattice site.
 
 \begin{figure}[t!h!]
 \begin{center}
@@ -1021,10 +1222,81 @@ Strain reduced by this huge displacement is partially absorbed by tensile strain
 A binding energy of -0.50 eV is observed.
 {\color{red}Todo: Jahn-Teller distortion (vacancy) $\rightarrow$ actually three possibilities. Due to the initial defect, symmetries are broken. The system should have relaxed into the minumum energy configuration!?}
 
-{\color{blue}Todo: Si int + vac and C sub ...?
-Investigation of vacancy, Si and C interstitital.
-As for the ground state of the single Si self-int, a 110 is also assumed as the lowest possibility in combination with other defects (which is a cruel assumption)!
-}
+\subsection{Combinations of Si self-interstitials and substitutional carbon}
+
+So far the C-Si \hkl<1 0 0> interstitial was found to be the energetically most favorable configuration.
+In fact substitutional C exhibits a configuration more than 3 eV lower in formation energy, however, the configuration does not account for the accompanying Si self-interstitial that is generated once a C atom occupies the site of a Si atom.
+With regard to the IBS process, in which highly energetic C atoms enter the Si target being able to kick out Si atoms from their lattice sites, such configurations are absolutely conceivable and a significant role for the precipitation process might be attributed to them.
+Thus, combinations of substitutional C and an additional Si self-interstitial are examined in the following.
+The ground state of a single Si self-interstitial was found to be the Si \hkl<1 1 0> self-interstitial configuration.
+For the follwoing study the same type of self-interstitial is assumed to provide the energetically most favorable configuration in combination with substitutional C.
+
+\begin{table}[ht!]
+\begin{center}
+\begin{tabular}{l c c c c c c}
+\hline
+\hline
+C$_{\text{sub}}$ & \hkl<1 1 0> & \hkl<-1 1 0> & \hkl<0 1 1> & \hkl<0 -1 1> &
+                   \hkl<1 0 1> & \hkl<-1 0 1> \\
+\hline
+1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\
+2 & \RM{2} & A & A & \RM{2} & C & \RM{5} \\
+3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\
+4 & \RM{4} & B & D & E & E & D \\
+5 & \RM{5} & C & A & \RM{2} & A & \RM{2} \\
+\hline
+\hline
+\end{tabular}
+\end{center}
+\caption{Equivalent configurations of \hkl<1 1 0>-type Si self-interstitials created at position I of figure \ref{fig:defects:pos_of_comb} and substitutional C created at positions 1 to 5.}
+\label{tab:defects:comb_csub_si110}
+\end{table}
+\begin{table}[ht!]
+\begin{center}
+\begin{tabular}{l c c c c c c c c c c}
+\hline
+\hline
+Conf & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & A & B & C & D & E \\
+\hline
+$E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\
+$E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\
+$r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\
+\hline
+\hline
+\end{tabular}
+\end{center}
+\caption{Formation $E_{\text{f}}$ and binding $E_{\text{b}}$ energies in eV of the combinational substitutional C and Si self-interstitial configurations as defined in table \ref{tab:defects:comb_csub_si110}.}
+\label{tab:defects:comb_csub_si110_energy}
+\end{table}
+
+Table \ref{tab:defects:comb_csub_si110} shows equivalent configurations of \hkl<1 1 0>-type Si self-interstitials and substitutional C.
+The notation of figure \ref{fig:defects:pos_of_comb} is used with the six possible Si self-interstitials created at the usual C-Si dumbbell position.
+Substitutional C is created at positions 1 to 5.
+Resulting formation and binding energies of the relaxed structures are listed in table \ref{tab:defects:comb_csub_si110_energy}.
+In addition the separation distance of the ssubstitutional C atom and the Si \hkl<1 1 0> dumbbell interstitial, which is defined to reside at $\frac{a_{\text{Si}}}{4} \hkl<1 1 1>$ is given.
+In total 10 different configurations exist within the investigated range.
+
+According to the formation energies none of the investigated structures is energetically preferred over the C-Si \hkl<1 0 0> dumbbell interstitial, which exhibits a formation energy of 3.88 eV.
+Further separated defects are assumed to approximate the sum of the formation energies of the isolated single defects.
+This is affirmed by the plot of the binding energies with respect to the separation distance in figure \ref{fig:defects:csub_si110} approximating zero with increasing distance.
+Thus, the C-Si \hkl<1 0 0> dumbbell structure remains the ground state configuration of a C interstitial in c-Si with a constant number of Si atoms.
+\begin{figure}[th!]
+\begin{center}
+\includegraphics[width=12cm]{c_sub_si110.ps}
+\end{center}
+\caption{Binding energy of combinations of a substitutional C and a Si \hkl<1 1 0> dumbbell self-interstitial with respect to the separation distance.}
+\label{fig:defects:csub_si110}
+\end{figure}
+
+The energetically most favorable configuration of the combined structures is the one with the substitutional C atom located next to the \hkl<1 1 0> interstitial along the \hkl<1 1 0> direction (configuration \RM{1}).
+Compressive stress along the \hkl<1 1 0> direction originating from the Si \hkl<1 1 0> self-intesrtitial is partially compensated by tensile stress resulting from substitutional C occupying the neighboured Si lattice site.
+In the same way the energetically most unfavorable configuration can be explained, which is configuration \RM{3}.
+The substitutional C is located next to the lattice site shared by the \hkl<1 1 0> Si self-interstitial along the \hkl<1 -1 0> direction.
+Thus, the compressive stress along \hkl<1 1 0> of the Si \hkl<1 1 0> interstitial is not compensated but intensified by the tensile stress of the substitutional C atom, which is no longer loacted along the direction of stress.
+
+{\color{red}Todo: Mig of C-Si DB conf to or from C sub + Si 110 int conf.}
+{\color{red}Todo: Si \hkl<1 1 0> migration barriers. If Si can go away fast, formation of substitutional C (and thus formation of SiC) might be a more probable process than C-Si dumbbell agglomeration.}
+{\color{red}Todo: Attraction of defect pair for large separation distances might be very low and thus, substitutional C + Si, which is diffusing somewhere else remains (out of a reaction radius)?}
 
 \section{Migration in systems of combined defects}
 
@@ -1041,13 +1313,16 @@ However, migration simulations show that only a low amount of energy is necessar
 \begin{center}
 \includegraphics[width=13cm]{vasp_mig/comb_mig_3-2_vac_fullct.ps}\\[2.0cm]
 \begin{picture}(0,0)(170,0)
-\includegraphics[width=3.5cm]{vasp_mig/comb_2-1_init.eps}
+\includegraphics[width=3cm]{vasp_mig/comb_2-1_init.eps}
 \end{picture}
-\begin{picture}(0,0)(60,0)
-\includegraphics[width=3.5cm]{vasp_mig/comb_2-1_seq.eps}
+\begin{picture}(0,0)(80,0)
+\includegraphics[width=3cm]{vasp_mig/comb_2-1_seq_03.eps}
+\end{picture}
+\begin{picture}(0,0)(-10,0)
+\includegraphics[width=3cm]{vasp_mig/comb_2-1_seq_06.eps}
 \end{picture}
 \begin{picture}(0,0)(-120,0)
-\includegraphics[width=3.5cm]{vasp_mig/comb_2-1_final.eps}
+\includegraphics[width=3cm]{vasp_mig/comb_2-1_final.eps}
 \end{picture}
 \begin{picture}(0,0)(25,20)
 \includegraphics[width=2.5cm]{100_arrow.eps}
@@ -1056,22 +1331,80 @@ However, migration simulations show that only a low amount of energy is necessar
 \includegraphics[height=2.2cm]{001_arrow.eps}
 \end{picture}
 \end{center}
-\caption{Transition vacancy-interstitial combinations into the configuration of substitutional carbon.}
+\caption{Transition of the configuration of the C-Si dumbbell interstitial in combination with a vacancy created at position 2 into the configuration of substitutional carbon.}
 \label{fig:defects:comb_mig_01}
 \end{figure}
-Figure \ref{fig:defects:comb_mig_01} shows the migration barriers and structures for transitions of the vacancy-interstitial configurations examined in figure \ref{fig:defects:comb_db_06} a) and b) into the configuration of substitutional carbon.
-
-
+\begin{figure}[!t!h]
+\begin{center}
+\includegraphics[width=13cm]{vasp_mig/comb_mig_4-2_vac_fullct.ps}\\[1.0cm]
+\begin{picture}(0,0)(150,0)
+\includegraphics[width=2cm]{vasp_mig/comb_3-1_init.eps}
+\end{picture}
+\begin{picture}(0,0)(60,0)
+\includegraphics[width=2cm]{vasp_mig/comb_3-1_seq_03.eps}
+\end{picture}
+\begin{picture}(0,0)(-45,0)
+\includegraphics[width=2cm]{vasp_mig/comb_3-1_seq_07.eps}
+\end{picture}
+\begin{picture}(0,0)(-130,0)
+\includegraphics[width=2cm]{vasp_mig/comb_3-1_final.eps}
+\end{picture}
+\begin{picture}(0,0)(25,20)
+\includegraphics[width=2.5cm]{100_arrow.eps}
+\end{picture}
+\begin{picture}(0,0)(230,0)
+\includegraphics[height=2.2cm]{001_arrow.eps}
+\end{picture}
+\end{center}
+\caption{Transition of the configuration of the C-Si dumbbell interstitial in combination with a vacancy created at position 3 into the configuration of substitutional carbon.}
+\label{fig:defects:comb_mig_02}
+\end{figure}
+Figure \ref{fig:defects:comb_mig_01} and \ref{fig:defects:comb_mig_02} show the migration barriers and structures for transitions of the vacancy-interstitial configurations examined in figure \ref{fig:defects:comb_db_06} a) and b) into a configuration of substitutional carbon.
 
-Low migration barriers, which means that SiC will modt probably form ... and so on ...
+In the first case the focus is on the migration of silicon atom number 1 towards the vacant site created at position 2, while the carbon atom substitutes the site of the migrating silicon atom.
+An energy of 0.6 eV necessary to overcome the migration barrier is found.
+This energy is low enough to constitute a feasible mechanism in SiC precipitation.
+To reverse this process 5.4 eV are needed, which make this mechanism very unprobable.
+The migration path is best described by the reverse process.
+Starting at 100 \% energy is needed to break the bonds of silicon atom 1 to its neighboured silicon atoms and that of the carbon atom to silicon atom number 5.
+At a displacement of 60 \% these bonds are broken.
+Due to this and due to the formation of new bonds, that is the bond of silicon atom number 1 to silicon atom number 5 and the bond of the carbon atom to its siliocn neighbour in the bottom left, a less steep increase of free energy is observed.
+At a displacement of approximately 30 \% the bond of silicon atom number 1 to the just recently created siliocn atom is broken up again, which explains the repeated boost in energy.
+Finally the system gains energy relaxing into the configuration of zero displacement.
 
+Due to the low binding energy observed, the configuration of the vacancy created at position 3 is assumed to be stable against transition.
+However, a relatively simple migration path exists, which intuitively seems to be a low energy process.
+The migration path and the corresponding differences in free energy are displayed in figure \ref{fig:defects:comb_mig_02}.
+In fact, migration simulations yield a barrier as low as 0.1 eV.
+This energy is needed to tilt the dumbbell as the displayed structure at 30 \% displacement shows.
+Once this barrier is overcome, the carbon atom forms a bond to the top left silicon atom and the interstitial silicon atom capturing the vacant site is forming new tetrahedral bonds to its neighboured silicon atoms.
+These new bonds and the relaxation into the substitutional carbon configuration are responsible for the gain in free energy.
+For the reverse process approximately 2.4 eV are nedded, which is 24 times higher than the forward process.
+Thus, substitutional carbon is assumed to be stable in contrast to the C-Si dumbbell interstitial located next to a vacancy.
+{\color{red}Todo: DB migration calculations along 110 (at the starting of this section)?}
 
-{\color{red}Todo: DB mig along 110 (at the starting of this section)?}
+\section{Conclusions concerning the SiC conversion mechanism}
 
-{\color{red}Todo: Migration of Si int + vac and C sub ...?}
+The ground state configuration of a carbon interstitial in crystalline siliocn is found to be the C-Si \hkl<1 0 0> dumbbell interstitial configuration.
+The threefold coordinated carbon and silicon atom share a usual silicon lattice site.
+Migration simulations reveal the carbon interstitial to be mobile at prevailing implantation temperatures requireing an activation energy of approximately 0.9 eV for migration as well as reorientation processes.
 
-{\color{red}Todo: Model of kick-out and kick-in mechnism?}
+Investigations of two carbon interstitials of the \hkl<1 0 0>-type and varying separations and orientations state an attractive interaction between these interstitials.
+Depending on orientation, energetically favorable configurations are found in which these two interstitials are located close together instead of the occurernce of largely separated and isolated defects.
+This is due to strain compensation enabled by the combination of such defects in certain orientations.
+For dumbbells oriented along the \hkl<1 1 0> direction and the assumption that there is the possibility of free orientation, an interaction energy proportional to the reciprocal cube of the distance in the far field regime is found.
+These findings support the assumption of the C-Si dumbbell agglomeration proposed by the precipitation model introduced in section \ref{section:assumed_prec}.
 
+By combination of the \hkl<1 0 0> dumbbell with a vacancy it is found that the configuration of substitutional carbon arising by the carbon interstitial atom occupying the vacant site is the energetically most favorable configuration.
+Low migration barriers are necessary to obtain this configuration and in contrast comparatively high activation energies necessary for the reverse process.
+Thus, carbon interstitials and vacancies located close together are assumed to end up in such a configuration in which the carbon atom is tetrahedrally coordinated and bound to four silicon atoms as expected in silicon carbide.
+In contrast to the above, this would suggest a silicon carbide precipitation by succesive creation of substitutional carbon instead of the agglomeration of C-Si dumbbell interstitials followed by an abrupt precipitation.
 
-\section{Conclusions for SiC preciptation}
+{\color{red}Todo:
+Better structure, better language, better methodology!
+}
+{\color{red}Todo:
+Fit of lennard-jones and other rep + attr potentials in 110 interaction data!
+}