commas ... To ...,
[lectures/latex.git] / posic / thesis / defects.tex
index c0acc81..ec6a210 100644 (file)
@@ -16,7 +16,7 @@ Respective results allow to draw conclusions concerning the SiC precipitation in
 
 \section{Silicon self-interstitials}
 
-For investigating the \si{} structures a Si atom is inserted or removed according to Fig.~\ref{fig:basics:ins_pos} of section~\ref{section:basics:defects}.
+For investigating the \si{} structures, a Si atom is inserted or removed according to Fig.~\ref{fig:basics:ins_pos} of section~\ref{section:basics:defects}.
 The formation energies of \si{} configurations are listed in Table~\ref{tab:defects:si_self} for both methods used in this work as well as results obtained by other {\em ab initio} studies~\cite{al-mushadani03,leung99}.
 \bibpunct{}{}{,}{n}{}{}
 \begin{table}[tp]
@@ -115,7 +115,7 @@ In Fig.~\ref{fig:defects:kin_si_hex} the relaxation process is shown on the basi
 \caption{Kinetic energy plot of the relaxation process of the hexagonal silicon self-interstitial defect simulation using the EA potential.}
 \label{fig:defects:kin_si_hex}
 \end{figure}
-To exclude failures in the implementation of the potential or the MD code itself the hexagonal defect structure was double-checked with the \textsc{parcas} MD code~\cite{parcas_md}.
+To exclude failures in the implementation of the potential or the MD code itself, the hexagonal defect structure was double-checked with the \textsc{parcas} MD code~\cite{parcas_md}.
 The respective relaxation energetics are likewise plotted and look similar to the energetics obtained by \textsc{posic}.
 In fact, the same type of interstitial arises using random insertions.
 In addition, variations exist, in which the displacement is only along two \hkl<1 0 0> axes ($E_\text{f}=3.8\,\text{eV}$) or along a single \hkl<1 0 0> axes ($E_\text{f}=3.6\,\text{eV}$) successively approximating the tetrahedral configuration and formation energy.
@@ -150,7 +150,7 @@ A more detailed description of the chemical bonding is achieved through quantum-
 
 \subsection{Defect structures in a nutshell}
 
-For investigating the \ci{} structures a C atom is inserted or removed according to Fig.~\ref{fig:basics:ins_pos} of section~\ref{section:basics:defects}.
+For investigating the \ci{} structures, a C atom is inserted or removed according to Fig.~\ref{fig:basics:ins_pos} of section~\ref{section:basics:defects}.
 Formation energies of the most common C point defects in crystalline Si are summarized in Table~\ref{tab:defects:c_ints}.
 The relaxed configurations are visualized in Fig.~\ref{fig:defects:c_conf}.
 Again, the displayed structures are the results obtained by the classical potential calculations.
@@ -236,8 +236,8 @@ $E_{\text{f}}=0.75\,\text{eV}$\\
 An experimental value of the formation energy of \cs{} was determined by a fit to solubility data yielding a concentration of $3.5 \times 10^{24} \exp{(-2.3\,\text{eV}/k_{\text{B}}T)} \text{ cm}^{-3}$~\cite{bean71}.
 However, there is no particular reason for treating the prefactor as a free parameter in the fit to the experimental data.
 It is simply given by the atomic density of pure silicon, which is $5\times 10^{22}\text{ cm}^{-3}$.
-Tersoff~\cite{tersoff90} and Dal Pino et al.~\cite{dal_pino93} pointed out that by combining this prefactor with the calculated values for the energy of formation ranging from \unit[1.6--1.89]{eV} an excellent agreement with the experimental solubility data within the entire temperature range of the experiment is obtained.
-This reinterpretation of the solubility data, first proposed by Tersoff and later on reinforced by Dal~Pino~et~al. is in good agreement with the results of the quantum-mechanical calculations performed in this work.
+Tersoff~\cite{tersoff90} and Dal~Pino~et~al.~\cite{dal_pino93} pointed out that by combining this prefactor with the calculated values for the energy of formation ranging from \unit[1.6--1.89]{eV} an excellent agreement with the experimental solubility data within the entire temperature range of the experiment is obtained.
+This reinterpretation of the solubility data, first proposed by Tersoff and later on reinforced by Dal~Pino~et~al.\ is in good agreement with the results of the quantum-mechanical calculations performed in this work.
 Unfortunately the EA potential undervalues the formation energy roughly by a factor of two, which is a definite drawback of the potential.
 
 Except for Tersoff's results for the tetrahedral configuration, the \ci{} \hkl<1 0 0> DB is the energetically most favorable interstitial configuration.
@@ -283,7 +283,7 @@ However, in calculations performed in this work, which fully account for the spi
 This is discussed in more detail in section~\ref{subsection:100mig}.
 
 To conclude, discrepancies between the results from classical potential calculations and those obtained from first principles are observed.
-Within the classical potentials EA outperforms Tersoff and is, therefore, used for further studies.
+Within the classical potentials, EA outperforms Tersoff and is, therefore, used for further studies.
 Both methods (EA and DFT) predict the \ci{} \hkl<1 0 0> DB configuration to be most stable.
 Also the remaining defects and their energetic order are described fairly well.
 It is thus concluded that, so far, modeling of the SiC precipitation by the EA potential might lead to trustable results.
@@ -291,7 +291,7 @@ It is thus concluded that, so far, modeling of the SiC precipitation by the EA p
 \subsection[C \hkl<1 0 0> dumbbell interstitial configuration]{\boldmath C \hkl<1 0 0> dumbbell interstitial configuration}
 \label{subsection:100db}
 
-As the \ci{} \hkl<1 0 0> DB constitutes the ground-state configuration of a C atom incorporated into otherwise perfect c-Si it is the most probable and, hence, one of the most important interstitial configurations of C in Si.
+As the \ci{} \hkl<1 0 0> DB constitutes the ground-state configuration of a C atom incorporated into otherwise perfect c-Si, it is the most probable and, hence, one of the most important interstitial configurations of C in Si.
 The structure was initially suspected by IR local vibrational mode absorption~\cite{bean70} and finally verified by electron paramagnetic resonance (EPR)~\cite{watkins76} studies on irradiated Si substrates at low temperatures.
 
 Fig.~\ref{fig:defects:100db_cmp} schematically shows the \ci{} \hkl<1 0 0> DB structure and Table~\ref{tab:defects:100db_cmp} lists the details of the atomic displacements, distances and bond angles obtained by classical potential and quantum-mechanical calculations.
@@ -480,7 +480,7 @@ However, this fact could not be reproduced by spin polarized \textsc{vasp} calcu
 Present results suggest this configuration to correspond to a real local minimum.
 In fact, an additional barrier has to be passed to reach this configuration starting from the \ci{} \hkl<1 0 0> interstitial configuration, which is investigated in section~\ref{subsection:100mig}.
 After slightly displacing the C atom along the \hkl[1 0 0] (equivalent to a displacement along \hkl[0 1 0]), \hkl[0 0 1], \hkl[0 0 -1] and \hkl[1 -1 0] direction the distorted structures relax back into the BC configuration.
-As will be shown in subsequent migration simulations the same would happen to structures where the C atom is displaced along the migration direction, which approximately is the \hkl[1 1 0] direction.
+As will be shown in subsequent migration simulations, the same would happen to structures where the C atom is displaced along the migration direction, which approximately is the \hkl[1 1 0] direction.
 These relaxations indicate that the BC configuration is a real local minimum instead of an assumed saddle point configuration.
 Fig.~\ref{img:defects:bc_conf} shows the structure, charge density isosurface and Kohn-Sham levels of the BC configuration.
 In fact, the net magnetization of two electrons is already suggested by simple molecular orbital theory considerations with respect to the bonding of the C atom.
@@ -733,7 +733,7 @@ For this reason, the assumption that C diffusion and reorientation is achieved b
 Fig.~\ref{fig:defects:cp_bc_00-1_mig} shows the evolution of structure and energy along the \ci{} BC to \hkl[0 0 -1] DB transition.
 Since the \ci{} BC configuration is unstable relaxing into the \hkl[1 1 0] DB configuration within this potential, the low kinetic energy state is used as a starting configuration.
 Two different pathways are obtained for different time constants of the Berendsen thermostat.
-With a time constant of \unit[1]{fs} the C atom resides in the \hkl(1 1 0) plane
+With a time constant of \unit[1]{fs}, the C atom resides in the \hkl(1 1 0) plane
  resulting in a migration barrier of \unit[2.4]{eV}.
 However, weaker coupling to the heat bath realized by an increase of the time constant to \unit[100]{fs} enables the C atom to move out of the \hkl(1 1 0) plane already at the beginning, which is accompanied by a reduction in energy, approaching the final configuration on a curved path.
 The energy barrier of this path is \unit[0.2]{eV} lower in energy than the direct migration within the \hkl(1 1 0) plane.
@@ -778,12 +778,12 @@ Thus, migration pathways involving the \ci{} \hkl[1 1 0] DB configuration as a s
 \label{fig:defects:110_mig}
 \end{figure}
 Fig.~\ref{fig:defects:110_mig} shows migration barriers of the \ci{} \hkl[1 1 0] DB to \hkl[0 0 -1], \hkl[0 -1 0] (in place) and BC configuration.
-As expected there is no maximum for the transition into the BC configuration.
+As expected, there is no maximum for the transition into the BC configuration.
 As mentioned earlier, the BC configuration itself constitutes a saddle point configuration relaxing into the energetically more favorable \hkl[1 1 0] DB configuration.
 An activation energy of \unit[2.2]{eV} is necessary to reorientate the \hkl[0 0 -1] into the \hkl[1 1 0] DB configuration, which is \unit[1.3]{eV} higher in energy.
 Residing in this state another \unit[0.90]{eV} is enough to make the C atom form a \hkl[0 0 -1] DB configuration with the Si atom of the neighbored lattice site.
 In contrast to quantum-mechanical calculations, in which the direct transition is the energetically most favorable transition and the transition composed of the intermediate migration steps is very unlikely to occur, the just presented pathway is much more conceivable in classical potential simulations, since the energetically most favorable transition found so far is likewise composed of two migration steps with activation energies of \unit[2.2]{eV} and \unit[0.5]{eV}, for which the intermediate state is the BC configuration, which is unstable.
-Thus the just proposed migration path, which involves the \hkl[1 1 0] interstitial configuration, becomes even more probable than the initially proposed path, which involves the BC configuration that is, in fact, unstable.
+Thus, the just proposed migration path, which involves the \hkl[1 1 0] interstitial configuration, becomes even more probable than the initially proposed path, which involves the BC configuration that is, in fact, unstable.
 Due to these findings, the respective path is proposed to constitute the diffusion-describing path.
 The evolution of structure and configurational energy is displayed again in Fig.~\ref{fig:defects:involve110}.
 \begin{figure}[tp]
@@ -974,7 +974,7 @@ As observed before, a typical C-C distance of \unit[2.79]{\AA} is, thus, observe
 In both configurations, the far-off atom of the second DB resides in threefold coordination.
 
 The interaction of \ci{} \hkl<1 0 0> DBs is investigated along the \hkl[1 1 0] bond chain assuming a possible reorientation of the DB atom at each position to minimize its configurational energy.
-Therefore, the binding energies of the energetically most favorable configurations with the second DB located along the \hkl[1 1 0] direction and resulting C-C distances of the relaxed structures are summarized in Table~\ref{tab:defects:comb_db110}.
+Therefor, the binding energies of the energetically most favorable configurations with the second DB located along the \hkl[1 1 0] direction and resulting C-C distances of the relaxed structures are summarized in Table~\ref{tab:defects:comb_db110}.
 \begin{table}[tp]
 \begin{center}
 \begin{tabular}{l c c c c c c}
@@ -1016,7 +1016,7 @@ However, a smooth transition path is not found.
 Intermediate configurations within the investigated turbulent pathway identify barrier heights of more than \unit[4]{eV} resulting in a low probability for the transition.
 The high activation energy is attributed to the stability of such a low energy configuration, in which the C atom of the second DB is located close to the initial DB.
 Due to an effective stress compensation realized in the respective low energy configuration, which will necessarily be lost during migration, a high energy configuration needs to get passed, which is responsible for the high barrier.
-Low barriers are only identified for transitions starting from energetically less favorable configurations, e.g. the configuration of a \hkl[-1 0 0] DB located at position 2 (\unit[-0.36]{eV}).
+Low barriers are only identified for transitions starting from energetically less favorable configurations, e.g.\ the configuration of a \hkl[-1 0 0] DB located at position 2 (\unit[-0.36]{eV}).
 Starting from this configuration, an activation energy of only \unit[1.2]{eV} is necessary for the transition into the ground state configuration.
 The corresponding migration energies and atomic configurations are displayed in Fig.~\ref{fig:036-239}.
 \begin{figure}[tp]
@@ -1199,7 +1199,7 @@ Fig.~\ref{fig_defects:245csub} lists the remaining configurations and binding en
 Obviously, agglomeration of C$_{\text{i}}$ and C$_{\text{s}}$ is energetically favorable except for separations along one of the \hkl<1 1 0> directions.
 The energetically most favorable configuration (configuration $\beta$) forms a strong but compressively strained C-C bond with a separation distance of \unit[0.142]{nm} sharing a Si lattice site.
 Again, conclusions concerning the probability of formation are drawn by investigating respective migration paths.
-Since C$_{\text{s}}$ is unlikely to exhibit a low activation energy for migration the focus is on C$_{\text{i}}$.
+Since C$_{\text{s}}$ is unlikely to exhibit a low activation energy for migration, the focus is on C$_{\text{i}}$.
 Pathways starting from the next most favored configuration, i.e.\ \cs{} located at position 2, into configuration $\alpha$ and $\beta$ are investigated, which show activation energies above \unit[2.2]{eV} and \unit[2.5]{eV}.
 The respective barriers and structures are displayed in Fig.~\ref{fig:051-xxx}.
 For the transition into configuration $\beta$, as before, the non-magnetic configuration is obtained.
@@ -1275,7 +1275,7 @@ Resulting binding energies of a C$_{\text{i}}$ DB and a nearby vacancy are liste
 \end{figure}
 Figure~\ref{fig:defects:comb_db_06} shows the associated configurations.
 All investigated structures are preferred compared to isolated, largely separated defects.
-In contrast to C$_{\text{s}}$ this is also valid for positions along \hkl[1 1 0] resulting in an entirely attractive interaction between defects of these types.
+In contrast to C$_{\text{s}}$, this is also valid for positions along \hkl[1 1 0] resulting in an entirely attractive interaction between defects of these types.
 Even for the largest possible distance (R) achieved in the calculations of the periodic supercell a binding energy as low as \unit[-0.31]{eV} is observed.
 The creation of a vacancy at position 1 results in a configuration of substitutional C on a Si lattice site and no other remaining defects.
 The \ci{} DB atom moves to position 1 where the vacancy is created and the \si{} DB atom recaptures the DB lattice site.
@@ -1290,7 +1290,7 @@ Hence, the \si{} DB atom is not only displaced along \hkl[0 0 -1] but also and t
 The C atom is slightly displaced in \hkl[0 1 -1] direction.
 A binding energy of \unit[-0.59]{eV} indicates the occurrence of much less strain reduction compared to that in the latter configuration.
 Evidently this is due to a smaller displacement of Si atom 1, which would be directly bound to the replaced Si atom at position 2.
-In the case of a vacancy created at position 4, even a slightly higher binding energy of \unit[-0.54]{eV} is observed, while the Si atom at the bottom left, which is bound to the \ci{} DB atom, is vastly displaced along \hkl[1 0 -1].
+In the case of a vacancy created at position 4, even a slightly higher binding energy of \unit[-0.54]{eV} is observed while the Si atom at the bottom left, which is bound to the \ci{} DB atom, is vastly displaced along \hkl[1 0 -1].
 However the displacement of the C atom along \hkl[0 0 -1] is less compared to the one in the previous configuration.
 Although expected due to the symmetric initial configuration, Si atom number 1 is not displaced correspondingly and also the \si DB atom is displaced to a greater extent in \hkl[-1 0 0] than in \hkl[0 -1 0] direction.
 The symmetric configuration is, thus, assumed to constitute a local maximum, which is driven into the present state by the conjugate gradient method used for relaxation.
@@ -1327,12 +1327,12 @@ In the second case the lowest barrier is found for the migration of Si number 1,
 A net amount of five Si-Si and one Si-C bond are additionally formed during transition.
 An activation energy of \unit[0.6]{eV} necessary to overcome the migration barrier is found.
 This energy is low enough to constitute a feasible mechanism in SiC precipitation.
-To reverse this process \unit[5.4]{eV} are needed, which make this mechanism very improbable.
+To reverse this process, \unit[5.4]{eV} are needed, which make this mechanism very improbable.
 %
 The migration path is best described by the reverse process.
 Starting at \unit[100]{\%}, energy is needed to break the bonds of Si atom 1 to its neighbored Si atoms as well as the bond of the C atom to Si atom number 5.
 At \unit[50]{\%} displacement, these bonds are broken.
-Due to this and due to the formation of new bonds, e.g. the bond of Si atom number 1 to Si atom number 5, a less steep increase of configurational energy is observed.
+Due to this, and due to the formation of new bonds, e.g.\ the bond of Si atom number 1 to Si atom number 5, a less steep increase of configurational energy is observed.
 In a last step, the just recently formed bond of Si atom number 1 to Si atom number 5 is broken up again as well as the bond of the initial Si DB atom and its Si neighbor in \hkl[-1 -1 -1] direction, which explains the repeated boost in energy.
 Finally, the system gains some configurational energy by relaxation into the configuration corresponding to \unit[0]{\%} displacement.
 %
@@ -1341,7 +1341,7 @@ In both cases, the formation of additional bonds is responsible for the vast gai
 
 In summary, pairs of C$_{\text{i}}$ DBs and vacancies, like no other before, show highly attractive interactions for all investigated combinations independent of orientation and separation direction of the defects.
 Furthermore, small activation energies, even for transitions into the ground state exist.
-If the vacancy is created at position 1 the system will end up in a configuration of C$_{\text{s}}$ anyways.
+If the vacancy is created at position 1, the system will end up in a configuration of C$_{\text{s}}$ anyways.
 Based on these results, a high probability for the formation of C$_{\text{s}}$ must be concluded.
 
 \subsection{Combinations of \si{} and \cs}
@@ -1590,7 +1590,7 @@ Results of {\em ab initio} and classical potential calculations are summarized i
 \end{table}
 Obviously the EA potential properly describes the relative energies of formation.
 Combined structures of C$_{\text{s}}$ and Si$_{\text{i}}$ T are energetically less favorable than the ground state C$_{\text{i}}$ \hkl<1 0 0> DB configuration.
-With increasing separation distance the energies of formation decrease.
+With increasing separation distance, the energies of formation decrease.
 However, even for non-interacting defects, the energy of formation, which is then given by the sum of the formation energies of the separated defects (\unit[4.15]{eV}) is still higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB.
 Unexpectedly, the structure of a Si$_{\text{i}}$ \hkl<1 1 0> DB and a neighbored C$_{\text{s}}$, which is the most favored configuration of a C$_{\text{s}}$ and Si$_{\text{i}}$ DB according to quantum-mechanical calculations, likewise constitutes an energetically favorable configuration within the EA description, which is even preferred over the two least separated configurations of C$_{\text{s}}$ and Si$_{\text{i}}$ T.
 This is attributed to an effective reduction in strain enabled by the respective combination.
@@ -1608,11 +1608,11 @@ Thus, a proper description with respect to the relative energies of formation is
 
 Obtained results for separated point defects in Si are in good agreement to previous theoretical work on this subject, both for intrinsic defects~\cite{leung99,al-mushadani03} as well as for C point defects~\cite{dal_pino93,capaz94}.
 The ground-state configurations of these defects, i.e.\ the Si$_{\text{i}}$ \hkl<1 1 0> and C$_{\text{i}}$ \hkl<1 0 0> DB, are reproduced and compare well to previous findings of theoretical investigations on Si$_{\text{i}}$~\cite{leung99,al-mushadani03} as well as theoretical~\cite{dal_pino93,capaz94,burnard93,leary97,jones04} and experimental~\cite{watkins76,song90} studies on C$_{\text{i}}$.
-A quantitatively improved activation energy of \unit[0.9]{eV} for a qualitatively equal migration path based on studies by Capaz et.~al.~\cite{capaz94} to experimental values~\cite{song90,lindner06,tipping87} ranging from \unit[0.70--0.87]{eV} reinforce their derived mechanism of diffusion for C$_{\text{i}}$ in Si
+A quantitatively improved activation energy of \unit[0.9]{eV} for a qualitatively equal migration path based on studies by Capaz et~al.~\cite{capaz94} to experimental values~\cite{song90,lindner06,tipping87} ranging from \unit[0.70--0.87]{eV} reinforce their derived mechanism of diffusion for C$_{\text{i}}$ in Si
 However, it turns out that the BC configuration is not a saddle point configuration as proposed by Capaz et~al.~\cite{capaz94} but constitutes a real local minimum if the electron spin is properly accounted for.
 A net magnetization of two electrons, which is already clear by simple molecular orbital theory considerations on the bonding of the $sp$ hybridized C atom, is settled.
 By investigating the charge density isosurface it turns out that the two resulting spin up electrons are localized in a torus around the C atom.
-With an activation energy of \unit[0.9]{eV} the C$_{\text{i}}$ carbon interstitial can be expected to be highly mobile at prevailing temperatures in the process under investigation, i.e.\ IBS.
+With an activation energy of \unit[0.9]{eV}, the C$_{\text{i}}$ carbon interstitial can be expected to be highly mobile at prevailing temperatures in the process under investigation, i.e.\ IBS.
 Since the \ci{} \hkl<1 0 0> DB is the ground-state configuration and highly mobile, possible migration of these DBs to form defect agglomerates, as demanded by the model introduced in section~\ref{section:assumed_prec}, is considered possible.
 
 Unfortunately the description of the same processes fails if classical potential methods are used.