calculated interfacial energy
[lectures/latex.git] / posic / thesis / md.tex
index bd6d979..fab4656 100644 (file)
@@ -457,6 +457,8 @@ However, by applying these values the final configuration varies only slightly f
 Obtained & 5495 & 5486 & 68591 & 74077\\
 Expected & 5500 & 5500 & 68588 & 74088\\
 Difference & -5 & -14 & 3 & -11\\
+Notation & $N^{\text{3C-SiC}}_{\text{C}}$ & $N^{\text{3C-SiC}}_{\text{Si}}$ 
+         & $N^{\text{c-Si}}_{\text{Si}}$ & $N^{\text{total}}_{\text{Si}}$ \\
 \hline
 \hline
 \end{tabular}
@@ -479,33 +481,59 @@ Once the main part of the excess energy is carried out previous settings for the
 Figure \ref{fig:md:pc_sic-prec} shows the radial distribution of the obtained precipitate configuration.
 The Si-Si radial distribution for both, plain c-Si and the precipitate configuration show a maximum at a distance of 0.235 nm, which is the distance of next neighboured Si atoms in c-Si.
 Although no significant change of the lattice constant of the surrounding c-Si matrix was assumed, surprisingly there is no change at all within observational accuracy.
-Each side length and the total volume of the simulation box is increased by 0.4 \% and 1.2 \% respectively of the initial state.
-Indeed an increase of the total volume is expected due to the slightly lower Si density of 3C-SiC compared to c-Si.
-The expected increase in volume can be calculated by
+Looking closer at higher order Si-Si peaks might even allow the guess of a slight increase of the lattice constant compared to the plain c-Si structure.
+A new Si-Si peak arises at 0.307 nm, which is identical to the peak of the C-C distribution around that value.
+It corresponds to second next neighbours in 3C-SiC, which applies for Si as well as C pairs.
+The bumps of the Si-Si distribution at higher distances marked by the green arrows can be explained in the same manner.
+They correspond to the fourth and sixth next neighbour distance in 3C-SiC.
+It is easily identifiable how these C-C peaks, which imply Si pairs at same distances inside the precipitate, contribute to the bumps observed in the Si-Si distribution.
+The Si-Si and C-C peak at 0.307 nm enables the determination of the lattic constant of the embedded 3C-SiC precipitate.
+A lattice constant of 4.34 \AA{} compared to 4.36 \AA{} for bulk 3C-SiC is obtained.
+This is in accordance with the peak of Si-C pairs at a distance of 0.188 nm.
+Thus, the precipitate structure is slightly compressed compared to the bulk phase.
+This is a quite surprising result since due to the finite size of the c-Si surrounding a non-negligible impact of the precipitate on the materializing c-Si lattice constant especially near the precipitate could be assumed.
+However, it seems that the size of the c-Si host matrix is chosen large enough to even find the precipitate in a compressed state.
+
+The absence of a compression of the c-Si surrounding is due to the possibility of the system to change its volume.
+Otherwise the increase of the lattice constant of the precipitate of roughly 4.31 \AA{} in the beginning up to 4.34 \AA{} in the relaxed precipitate configuration could not take place without an accompanying reduction of the lattice constant of the c-Si surrounding.
+If the total volume is assumed to be the sum of the volumes that are composed of Si atoms forming the c-Si surrounding and Si atoms involved forming the precipitate the expected increase can be calculated by
 \begin{equation}
-I_V=\frac{N^{\text{c-Si}}_{\text{Si}}/n_{\text{Si}}^{\text{c-Si}}+
-           N^{\text{3C-SiC}}_{\text{Si}}/n_{\text{Si}}^{\text{3C-SiC}}}
-          {N^{\text{c-Si and 3C-SiC}}_{\text{Si}}/n_{\text{Si}}^{\text{c-Si}}}
+ \frac{V}{V_0}=
+ \frac{\frac{N^{\text{c-Si}}_{\text{Si}}}{8/a_{\text{c-Si of precipitate configuration}}}+
+ \frac{N^{\text{3C-SiC}}_{\text{Si}}}{4/a_{\text{3C-SiC of precipitate configuration}}}}
+ {\frac{N^{\text{total}}_{\text{Si}}}{8/a_{\text{plain c-Si}}}}
 \end{equation}
-with $N_{\text{Si}}$ and $n_{\text{Si}}$ being the number of Si atoms and the Si density respectively of the corresponding material.
-Due to a slightly lower Si density of 3C-SiC compared to c-Si an increase of x \% of the total volume would be expected for precipitate with a radius of 3 nm embedded in 
-
-Calc expected increase due to Si density mismatch ...
-Obviously the surrounding matrix is chosen big enough to exclude size effects ...
-Nice, since obviously matrix is big enough to exclude size effects in the system in which pbc are applied, we can consider it single precipitate in a infinite Si matrix.
-A new peak for the silicon pairs arises at 0.307 nm.
-It is identical to the peak of the C-C distribution around that value.
-It corresponds to second next neighbours in 3C-SiC, which applies for Si as well as C pairs.
-The bumps of the Si-Si distribution at higher distances, which are marked by green arrows and do not exist in plain c-Si, can be explained in the same manner.
-They correspond to the fourth and sixth next neighbour in 3C-SiC.
-Again, these peaks apply to Si and C pairs and indeed it is easily identifiale how the C-C peaks at contribute to the bumps observed in the Si-Si distribution.
-
-4.34 \AA{} compared to 4.36 \AA{}.
+with the notation used in table \ref{table:md:sic_prec}.
+The lattice constant of plain c-Si at $20\,^{\circ}\mathrm{C}$ can be determined more accurately by the side lengthes of the simulation box of an equlibrated structure instead of using the radial distribution data.
+By this a value of $a_{\text{plain c-Si}}=5.439\text{ \AA}$ is obtained.
+The same lattice constant is assumed for the c-Si surrounding in the precipitate configuration $a_{\text{c-Si of precipitate configuration}}$ since peaks in the radial distribution match the ones of plain c-Si.
+Using $a_{\text{3C-SiC of precipitate configuration}}=4.34\text{ \AA}$ as observed from the radial distribution finally results in an increase of the initial volume by 0.12 \%.
+However, each side length and the total volume of the simulation box is increased by 0.20 \% and 0.61 \% respectively compared to plain c-Si at $20\,^{\circ}\mathrm{C}$.
+Since the c-Si surrounding resides in an uncompressed state the excess increase must be attributed to relaxation of strain with the strain resulting from either the compressed precipitate or the 3C-SiC/c-Si interface region.
+This also explains the possibly identified slight increase of the c-Si lattice constant in the surrounding as mentioned earlier.
+As the pressure is set to zero the free energy is minimized with respect to the volume enabled by the Berendsen barostat algorithm.
+Apparently the minimized structure with respect to the volume is a configuration of a small compressively stressed precipitate and a large amount of slightly stretched c-Si in the surrounding.
+
+In the following the 3C-SiC/c-Si interface is described in further detail.
+One important size analyzing the interface is the interfacial energy.
+It is determined exactly in the same way than the formation energy as described in equation \eqref{eq:defects:ef2}.
+Using the notation of table \ref{table:md:sic_prec} and assuming that the system is composed out of $N^{\text{3C-SiC}}_{\text{C}}$ C atoms forming the SiC compound plus the remaining Si atoms, the energy is given by
+\begin{equation}
+ E_{\text{f}}=E-
+ N^{\text{3C-SiC}}_{\text{C}} \mu_{\text{SiC}}-
+ \left(N^{\text{total}}_{\text{Si}}-N^{\text{3C-SiC}}_{\text{C}}\right)
+ \mu_{\text{Si}} \text{ ,}
+\label{eq:md:ife}
+\end{equation}
+with $E$ being the free energy of the precipitate configuration at zero temperature.
+An interfacial energy of 2267.28 eV is obtained.
+The amount of C atoms together with the observed lattice constant of the precipitate leads to a precipitate radius of 29.93 \AA.
+Thus, the interface tension, given by the energy of the interface devided by the surface area of the precipitate is $20.15\,\frac{\text{eV}}{\text{nm}^2}$ or $3.23\times 10^{-4}\,\frac{\text{J}}{\text{cm}^2}$.
+This is located inside the eperimentally estimated range of $2-8\times 10^{-4}\,\frac{\text{J}}{\text{cm}^2}$ \cite{taylor93}.
 
-New lattice constant
-Surface energy
 
-Now let's see, whether annealing will lead to some energetically more favorable configurations.
+Since interface region is constructed and not neccesarily corresponds to the energetically most favorable layout we will now try hard to improve this ...
+Let's see, whether annealing will lead to some energetically more favorable configurations.
 
 
 \subsection{Simulations at temperatures exceeding the silicon melting point}
@@ -514,5 +542,11 @@ LL Cool J is hot as hell!
 
 A different simulation volume and refined amount as well as shape of insertion volume for the C atoms, to stay compareable to the results gained in the latter section, is used throughout all following simulations.
 
+\subsection{Todo}
+
+{\color{red}TODO: self-guided MD!}
+
+{\color{red}TODO: other approaches!}
+
 {\color{red}TODO: ART MD?}