todos, mainly short caption fixes
[lectures/latex.git] / posic / thesis / sic.tex
index 5629f6f..1b09e3d 100644 (file)
@@ -35,7 +35,7 @@ Each SiC bilayer can be situated in one of three possible positions (abbreviated
 \end{minipage}
 %\includegraphics[width=10cm]{polytypes.eps}
 \end{center}
-\caption{Stacking sequence of SiC bilayers of the most common polytypes of SiC (from left to right): 3C, 2H, 4H and 6H.}
+\caption[Stacking sequence of SiC bilayers of the most common polytypes of SiC.]{Stacking sequence of SiC bilayers of the most common polytypes of SiC (from left to right): 3C, 2H, 4H and 6H.}
 \label{fig:sic:polytypes}
 \end{figure}
 Fig.~\ref{fig:sic:polytypes} shows the stacking sequence of the most common and technologically most important SiC polytypes, which are the cubic (3C) and hexagonal (2H, 4H and 6H) polytypes.
@@ -103,7 +103,7 @@ Thus the cubic phase is most effective for highly efficient high-performance ele
 \begin{center}
 \includegraphics[width=0.35\columnwidth]{sic_unit_cell.eps}
 \end{center}
-\caption{3C-SiC unit cell. Yellow and grey spheres correpsond to Si and C atoms respectively. Covalent bonds are illustrated by blue lines.}
+\caption[3C-SiC unit cell.]{3C-SiC unit cell. Yellow and grey spheres correpsond to Si and C atoms respectively. Covalent bonds are illustrated by blue lines.}
 \label{fig:sic:unit_cell}
 \end{figure}
 Its unit cell is shown in Fig.~\ref{fig:sic:unit_cell}.
@@ -289,7 +289,7 @@ Fig. \ref{fig:sic:hrem_sharp} shows the respective high resolution transmission
 \begin{center}
 \includegraphics[width=0.6\columnwidth]{ibs_3c-sic.eps}
 \end{center}
-\caption[Bright field (a) and \hkl(1 1 1) SiC dark field (b) cross-sectional TEM micrographs of the buried SiC layer in Si created by the two-temperature implantation technique and subsequent annealing.]{Bright field (a) and \hkl(1 1 1) SiC dark field (b) cross-sectional TEM micrographs of the buried SiC layer in Si created by the two-temperature implantation technique and subsequent annealing as explained in the text \cite{lindner99_2}. The inset shows a selected area diffraction pattern of the buried layer.}
+\caption[Bright field and \hkl(1 1 1) SiC dark field cross-sectional TEM micrographs of the buried SiC layer in Si created by the two-temperature implantation technique and subsequent annealing.]{Bright field (a) and \hkl(1 1 1) SiC dark field (b) cross-sectional TEM micrographs of the buried SiC layer in Si created by the two-temperature implantation technique and subsequent annealing as explained in the text \cite{lindner99_2}. The inset shows a selected area diffraction pattern of the buried layer.}
 \label{fig:sic:hrem_sharp}
 \end{figure}
 
@@ -375,7 +375,7 @@ The agglomerates of such dimers, which do not generate lattice strain but lead t
 \subfigure[]{\label{fig:sic:hrem:c-si}\includegraphics[width=0.25\columnwidth]{tem_c-si-db.eps}}
 \subfigure[]{\label{fig:sic:hrem:sic}\includegraphics[width=0.25\columnwidth]{tem_3c-sic.eps}}
 \end{center}
-\caption[High resolution transmission electron microscopy (HREM) micrographs of agglomerates of C-Si dimers showing dark contrasts and otherwise undisturbed Si lattice fringes (a) and equally sized Moir\'e patterns indicating 3C-SiC precipitates (b).]{High resolution transmission electron microscopy (HREM) micrographs \cite{lindner99_2} of agglomerates of C-Si dimers showing dark contrasts and otherwise undisturbed Si lattice fringes (a) and equally sized Moir\'e patterns indicating 3C-SiC precipitates (b).}
+\caption[High resolution transmission electron microscopy (HREM) micrographs of agglomerates of C-Si dimers showing dark contrasts and otherwise undisturbed Si lattice fringes and equally sized Moir\'e patterns indicating 3C-SiC precipitates.]{High resolution transmission electron microscopy (HREM) micrographs \cite{lindner99_2} of agglomerates of C-Si dimers showing dark contrasts and otherwise undisturbed Si lattice fringes (a) and equally sized Moir\'e patterns indicating 3C-SiC precipitates (b).}
 \label{fig:sic:hrem}
 \end{figure}
 A topotactic transformation into a 3C-SiC precipitate occurs once a critical radius of \unit[2]{nm} to \unit[4]{nm} is reached.