commas ... To ...,
[lectures/latex.git] / posic / thesis / simulation.tex
index a32d343..850014e 100644 (file)
@@ -24,7 +24,7 @@ Type 3 (Fig.~\ref{fig:simulation:sc3}) contains 4 primitive cells with 8 atoms a
 The basis is simple cubic.
 
 In the following, an overview of the different simulation procedures and respective parameters is presented.
-These procedures and parameters differ depending on whether classical potentials or {\em ab initio} methods are used and on what is going to be investigated.
+These procedures and parameters differ depending on whether classical potentials or {\em ab initio} methods are used as well as on the object of investigation.
 
 \section{DFT calculations}
 \label{section:simulation:dft_calc}
@@ -47,7 +47,7 @@ In MD simulations the equations of motion are integrated by a fourth order predi
 % todo - point defects are calculated for the neutral charge state.
 
 Most of the parameter settings, as determined above, constitute a tradeoff regarding the tasks that need to be addressed.
-These parameters include the size of the supercell, cut-off energy and $k$ point mesh.
+These parameters include the size of the supercell, cut-off energy and $\vec{k}$-point mesh.
 The choice of these parameters is considered to reflect a reasonable treatment with respect to both, computational efficiency and accuracy, as will be shown in the next sections.
 Furthermore, criteria concerning the choice of the potential and the exchange-correlation (XC) functional are being outlined.
 Finally, the utilized parameter set is tested by comparing the calculated values of the cohesive energy and the lattice constant to experimental data.
@@ -63,8 +63,8 @@ Obviously, the interaction reduces with increasing system size and will be negli
 \caption{Defect formation energies of several defects in c-Si with respect to the size of the supercell.}
 \label{fig:simulation:ef_ss}
 \end{figure}
-To estimate a critical size the formation energies of several intrinsic defects in Si with respect to the system size are calculated.
-An energy cut-off of \unit[250]{eV} and a $4\times4\times4$ Monkhorst-Pack $k$-point mesh~\cite{monkhorst76} is used.
+To estimate a critical size, the formation energies of several intrinsic defects in Si with respect to the system size are calculated.
+An energy cut-off of \unit[250]{eV} and a $4\times4\times4$ Monkhorst-Pack $\vec{k}$-point mesh~\cite{monkhorst76} is used.
 The results are displayed in Fig.~\ref{fig:simulation:ef_ss}.
 The formation energies converge fast with respect to the system size.
 Thus, investigating supercells containing more than 56 primitive cells or $112\pm1$ atoms should be reasonably accurate.
@@ -75,11 +75,11 @@ Throughout this work sampling of the BZ is restricted to the $\Gamma$ point.
 The calculation is usually two times faster and half of the storage needed for the wave functions can be saved since $c_{i,q}=c_{i,-q}^*$, where the $c_{i,q}$ are the Fourier coefficients of the wave function.
 As discussed in section~\ref{subsection:basics:bzs}, this does not pose a severe limitation if the supercell is large enough.
 Indeed, it was shown~\cite{dal_pino93} that already for calculations involving only 32 atoms, energy values obtained by sampling the $\Gamma$ point differ by less than \unit[0.02]{eV} from calculations using the Baldereschi point~\cite{baldereschi73}, which constitutes a mean-value point in the BZ.
-Thus, the calculations of the present study on supercells containing $108$ primitive cells can be considered sufficiently converged with respect to the $k$-point mesh.
+Thus, the calculations of the present study on supercells containing $108$ primitive cells can be considered sufficiently converged with respect to the $\vec{k}$-point mesh.
 
 \subsection{Energy cut-off}
 
-To determine an appropriate cut-off energy of the plane-wave basis set a $2\times2\times2$ supercell of type 3 containing $32$ Si and $32$ C atoms in the 3C-SiC structure is equilibrated for different cut-off energies in the LDA.
+To determine an appropriate cut-off energy of the plane-wave basis set, a $2\times2\times2$ supercell of type 3 containing $32$ Si and $32$ C atoms in the 3C-SiC structure is equilibrated for different cut-off energies in the LDA.
 \begin{figure}[t]
 \begin{center}
 \includegraphics[width=0.7\textwidth]{sic_32pc_gamma_cutoff_lc.ps}
@@ -93,9 +93,9 @@ Obviously, an energy cut-off of \unit[300]{eV}, although the minimum acceptable,
 
 \subsection{Potential and exchange-correlation functional}
 
-To find the most suitable combination of potential and XC functional for the C/Si system a $2\times2\times2$ supercell of type 3 of Si and C, both in the diamond structure, as well as 3C-SiC is equilibrated for different combinations of the available potentials and XC functionals.
-To exclude a possibly corrupting influence of the other parameters highly accurate calculations are performed, i.e.\ an energy cut-off of \unit[650]{eV} and a $6\times6\times6$ Monkhorst-Pack $k$-point mesh is used.
-Next to the ultra-soft pseudopotentials~\cite{vanderbilt90} \textsc{vasp} offers the projector augmented-wave method (PAW)~\cite{bloechl94} to describe the ion-electron interaction.
+To find the most suitable combination of potential and XC functional for the C/Si system, a $2\times2\times2$ supercell of type 3 of Si and C, both in the diamond structure, as well as 3C-SiC is equilibrated for different combinations of the available potentials and XC functionals.
+To exclude a possibly corrupting influence of the other parameters, highly accurate calculations are performed, i.e.\ an energy cut-off of \unit[650]{eV} and a $6\times6\times6$ Monkhorst-Pack $\vec{k}$-point mesh is used.
+Next to the ultra-soft pseudopotentials~\cite{vanderbilt90}, \textsc{vasp} offers the projector augmented-wave method (PAW)~\cite{bloechl94} to describe the ion-electron interaction.
 The two XC functionals included in the test are of the LDA~\cite{ceperley80,perdew81} and GGA~\cite{perdew86,perdew92} type as implemented in \textsc{vasp}.
 
 \begin{table}[t]
@@ -213,7 +213,7 @@ Since, on the other hand, properties of the 3C-SiC precipitate, its surrounding
 
 To construct a spherical and topotactically aligned 3C-SiC precipitate in c-Si, the approach illustrated in the following is applied.
 A total simulation volume $V$ consisting of 21 unit cells of c-Si in each direction is created.
-To obtain a minimal and stable precipitate 5500 carbon atoms are considered necessary according to experimental results as discussed in section~\ref{subsection:ibs} and~\ref{section:assumed_prec}.
+To obtain a minimal and stable precipitate, 5500 carbon atoms are considered necessary according to experimental results as discussed in section~\ref{subsection:ibs} and~\ref{section:assumed_prec}.
 This corresponds to a spherical 3C-SiC precipitate with a radius of approximately \unit[3]{nm}.
 The initial precipitate configuration is constructed in two steps.
 In the first step the surrounding Si matrix is created.