more fixes
[lectures/latex.git] / posic / thesis / summary_outlook.tex
index 9cc3c97..735870c 100644 (file)
@@ -1,8 +1,11 @@
 \chapter{Summary and conclusions}
 \label{chapter:summary}
 
-\paragraph{To summarize,}
+{\setlength{\parindent}{0pt} 
+%\paragraph{To summarize,}
+{\bf To summarize},
 in a short review of the C/Si compound and the fabrication of the technologically promising semiconductor SiC by IBS, two controversial assumptions of the precipitation mechanism of 3C-SiC in c-Si are elaborated.
+}
 These propose the precipitation of SiC by agglomeration of \ci{} DBs followed by a sudden formation of SiC and otherwise a formation by successive accumulation of \cs{} via intermediate stretched SiC structures, which are coherent to the Si lattice.
 To solve this controversy and contribute to the understanding of SiC precipitation in c-Si, a series of atomistic simulations is carried out.
 In the first part, intrinsic and C related point defects in c-Si as well as some selected diffusion processes of the C defect are investigated by means of first-principles quatum-mechanical calculations based on DFT and classical potential calculations employing a Tersoff-like analytical bond order potential.
@@ -123,12 +126,13 @@ Loose structures of stretched SiC, which are adjusted to the Si lattice with res
 \si{} is often found in the direct surrounding.
 Entropic contributions are assumed to be responsible for these structures at elevated temperatures that deviate from the ground state at 0 K.
 Indeed, utilizing increased temperatures is assumed to constitute a necessary condition to simulate IBS of 3C-SiC in c-Si.
-
-
+\\
+\\
 % todo - sync with respective conclusion chapter
-
+%
 % conclusions 2nd part
-\paragraph{Conclusions}
+%\paragraph{Conclusions}
+{\bf Conclusions}
 concerning the SiC conversion mechanism are derived from results of both, first-principles and classical potential calculations.
 Although classical potential MD calculations fail to directly simulate the precipitation of SiC, obtained results, on the one hand, reinforce previous findings of the first-principles investigations and, on the other hand, allow further conclusions on the SiC precipitation in Si.
 
@@ -183,9 +187,9 @@ More substantially, understoichiometric implantations at room temperature into p
 The strained structure is found to be stable up to \degc{810}.
 Coherent clustering followed by precipitation is suggested if these structures are annealed at higher temperatures.
 %
-Similar, implantations of an understoichiometric dose into c-Si at room temperature followed by thermal annealing result in small spherical sized C$_{\text{i}}$ agglomerates below \unit[700]{$^{\circ}$C} and SiC precipitates of the same size above \unit[700]{$^{\circ}$C}\cite{werner96} annealing temperature.
+Similar, implantations of an understoichiometric dose into c-Si at room temperature followed by thermal annealing result in small spherical sized C$_{\text{i}}$ agglomerates below \unit[700]{$^{\circ}$C} and SiC precipitates of the same size above \unit[700]{$^{\circ}$C} \cite{werner96} annealing temperature.
 Since, however, the implantation temperature is considered more efficient than the postannealing temperature, SiC precipitates are expected and indeed observed for as-implanted samples \cite{lindner99,lindner01} in implantations performed at \unit[450]{$^{\circ}$C}.
-Thus, implanted C is likewise expected to occupy substitutionally regular Si lattice sites right from the start for implantations into c-Si at elevated temperatures.
+According to this, implanted C is likewise expected to occupy substitutionally regular Si lattice sites right from the start for implantations into c-Si at elevated temperatures.
 %
 %
 % low t - randomly ... 
@@ -215,17 +219,19 @@ Until then, however, these may likewise be composed of stretched SiC structures
 %In both cases Si$_{\text{i}}$ might be attributed a third role, which is the partial compensation of tensile strain that is present either in the stretched SiC or at the interface of the contracted SiC and the Si host.
 
 To conclude, results of the present study indicate a precipitation of SiC in Si by successive agglomeration of \cs.
-\si{}, which is likewise existent, serves several needs: as a vehicle to rearrange the \cs{} atoms, as a building block for the surrounding Si host or further SiC and for strain compensation, either in the stretched SiC structure or at the interface of the SiC precipitate and the Si matrix.
-% todo \si reduced interfacial energy
-%
-Results of the atomistic simulation study indicating the respective precipitation mechanism conform well with other experimental findings.
+Elevated temperatures result in increased entropic contributions to structural formation.
+Moreover, conditions prevalent in IBS deviate the system from thermodynamic equilibrium.
+Thereby, C$_{\text{i}}$ is enabled to turn into C$_{\text{s}}$ accompanied by the emission of Si$_{\text{i}}$.
+\si{}, which is likewise existent, serves several needs: as a vehicle to rearrange the \cs{} atoms, as a building block for the surrounding Si host or further SiC and for strain compensation.
+The \si{} vehicle turns \cs{} into highly mobile \ci.
+This way, C can be easily rearranged in order to end up in a configuration of C atoms that occupy substitutionally the lattice sites of one of the fcc lattices of the diamond structure.
+Stretched SiC structures arise, which are coherently aligned to the Si matrix.
+\si{} is believed to likewise compensate the tensile strain within these structures.
+This is followed by the precipitation into incoherent 3C-SiC once the strain energy of the coherent structure surpasses the interfacial energy of the incoherent precipitate and the c-Si substrate.
+The associated volume reduction is compensated by \si{} that may serve as a supply for further SiC or as a building block for the surrounding Si host and likewise reduce existing strain in the interface region.
 %
-Thus, we propose an increased participation of C$_{\text{s}}$ already in the initial stages of the implantation process at temperatures above \unit[450]{$^{\circ}$C}, the temperature most applicable for the formation of SiC layers of high crystalline quality and topotactical alignment\cite{lindner99}.
-Thermally activated, C$_{\text{i}}$ is enabled to turn into C$_{\text{s}}$ accompanied by Si$_{\text{i}}$.
-The associated emission of Si$_{\text{i}}$ is needed for several reasons.
-For the agglomeration and rearrangement of C, Si$_{\text{i}}$ is needed to turn C$_{\text{s}}$ into highly mobile C$_{\text{i}}$ again.
-Since the conversion of a coherent SiC structure, i.e. C$_{\text{s}}$ occupying the Si lattice sites of one of the two fcc lattices that build up the c-Si diamond lattice, into incoherent SiC is accompanied by a reduction in volume, large amounts of strain are assumed to reside in the coherent as well as at the surface of the incoherent structure.
-Si$_{\text{i}}$ serves either as a supply of Si atoms needed in the surrounding of the contracted precipitates or as an interstitial defect minimizing the emerging strain energy of a coherent precipitate.
-The latter has been directly identified in the present simulation study, i.e. structures of two C$_{\text{s}}$ atoms and Si$_{\text{i}}$ located in the vicinity.
+Results of the atomistic simulation study that indicate the respective precipitation mechanism conform well with other experimental findings.
+By verification, the derived conclusions with respect to the precipitation mechanism are reinforced.
+Furthermore, experimental results that suggest a precipitation mechanism based on the agglomeration of \ci{} do not conflict with the proposed model of precipitation as concluded in the present study.