adding pair correlation function
[physik/posic.git] / moldyn.c
1 /*
2  * moldyn.c - molecular dynamics library main file
3  *
4  * author: Frank Zirkelbach <frank.zirkelbach@physik.uni-augsburg.de>
5  *
6  */
7
8 #define _GNU_SOURCE
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <string.h>
12 #include <sys/types.h>
13 #include <sys/stat.h>
14 #include <fcntl.h>
15 #include <unistd.h>
16 #include <sys/time.h>
17 #include <time.h>
18 #include <math.h>
19
20 #include "moldyn.h"
21 #include "report/report.h"
22
23 /*
24  * global variables, pse and atom colors (only needed here)
25  */ 
26
27 static char *pse_name[]={
28         "*",
29         "H",
30         "He",
31         "Li",
32         "Be",
33         "B",
34         "C",
35         "N",
36         "O",
37         "F",
38         "Ne",
39         "Na",
40         "Mg",
41         "Al",
42         "Si",
43         "P",
44         "S",
45         "Cl",
46         "Ar",
47 };
48
49 static char *pse_col[]={
50         "*",
51         "White",
52         "He",
53         "Li",
54         "Be",
55         "B",
56         "Gray",
57         "N",
58         "Blue",
59         "F",
60         "Ne",
61         "Na",
62         "Mg",
63         "Al",
64         "Yellow",
65         "P",
66         "S",
67         "Cl",
68         "Ar",
69 };
70
71 /*
72  * the moldyn functions
73  */
74
75 int moldyn_init(t_moldyn *moldyn,int argc,char **argv) {
76
77         printf("[moldyn] init\n");
78
79         memset(moldyn,0,sizeof(t_moldyn));
80
81         moldyn->argc=argc;
82         moldyn->args=argv;
83
84         rand_init(&(moldyn->random),NULL,1);
85         moldyn->random.status|=RAND_STAT_VERBOSE;
86
87         return 0;
88 }
89
90 int moldyn_shutdown(t_moldyn *moldyn) {
91
92         printf("[moldyn] shutdown\n");
93
94         moldyn_log_shutdown(moldyn);
95         link_cell_shutdown(moldyn);
96         rand_close(&(moldyn->random));
97         free(moldyn->atom);
98
99         return 0;
100 }
101
102 int set_int_alg(t_moldyn *moldyn,u8 algo) {
103
104         printf("[moldyn] integration algorithm: ");
105
106         switch(algo) {
107                 case MOLDYN_INTEGRATE_VERLET:
108                         moldyn->integrate=velocity_verlet;
109                         printf("velocity verlet\n");
110                         break;
111                 default:
112                         printf("unknown integration algorithm: %02x\n",algo);
113                         printf("unknown\n");
114                         return -1;
115         }
116
117         return 0;
118 }
119
120 int set_cutoff(t_moldyn *moldyn,double cutoff) {
121
122         moldyn->cutoff=cutoff;
123
124         printf("[moldyn] cutoff [A]: %f\n",moldyn->cutoff);
125
126         return 0;
127 }
128
129 int set_bondlen(t_moldyn *moldyn,double b0,double b1,double bm) {
130
131         moldyn->bondlen[0]=b0*b0;
132         moldyn->bondlen[1]=b1*b1;
133         if(bm<0)
134                 moldyn->bondlen[2]=b0*b1;
135         else
136                 moldyn->bondlen[2]=bm*bm;
137
138         return 0;
139 }
140
141 int set_temperature(t_moldyn *moldyn,double t_ref) {
142
143         moldyn->t_ref=t_ref;
144
145         printf("[moldyn] temperature [K]: %f\n",moldyn->t_ref);
146
147         return 0;
148 }
149
150 int set_pressure(t_moldyn *moldyn,double p_ref) {
151
152         moldyn->p_ref=p_ref;
153
154         printf("[moldyn] pressure [bar]: %f\n",moldyn->p_ref/BAR);
155
156         return 0;
157 }
158
159 int set_pt_scale(t_moldyn *moldyn,u8 ptype,double ptc,u8 ttype,double ttc) {
160
161         moldyn->pt_scale=(ptype|ttype);
162         moldyn->t_tc=ttc;
163         moldyn->p_tc=ptc;
164
165         printf("[moldyn] p/t scaling:\n");
166
167         printf("  p: %s",ptype?"yes":"no ");
168         if(ptype)
169                 printf(" | type: %02x | factor: %f",ptype,ptc);
170         printf("\n");
171
172         printf("  t: %s",ttype?"yes":"no ");
173         if(ttype)
174                 printf(" | type: %02x | factor: %f",ttype,ttc);
175         printf("\n");
176
177         return 0;
178 }
179
180 int set_dim(t_moldyn *moldyn,double x,double y,double z,u8 visualize) {
181
182         moldyn->dim.x=x;
183         moldyn->dim.y=y;
184         moldyn->dim.z=z;
185
186         moldyn->volume=x*y*z;
187
188         if(visualize) {
189                 moldyn->vis.dim.x=x;
190                 moldyn->vis.dim.y=y;
191                 moldyn->vis.dim.z=z;
192         }
193
194         moldyn->dv=0.000001*moldyn->volume;
195
196         printf("[moldyn] dimensions in A and A^3 respectively:\n");
197         printf("  x: %f\n",moldyn->dim.x);
198         printf("  y: %f\n",moldyn->dim.y);
199         printf("  z: %f\n",moldyn->dim.z);
200         printf("  volume: %f\n",moldyn->volume);
201         printf("  visualize simulation box: %s\n",visualize?"yes":"no");
202         printf("  delta volume (pressure calc): %f\n",moldyn->dv);
203
204         return 0;
205 }
206
207 int set_nn_dist(t_moldyn *moldyn,double dist) {
208
209         moldyn->nnd=dist;
210
211         return 0;
212 }
213
214 int set_pbc(t_moldyn *moldyn,u8 x,u8 y,u8 z) {
215
216         printf("[moldyn] periodic boundary conditions:\n");
217
218         if(x)
219                 moldyn->status|=MOLDYN_STAT_PBX;
220
221         if(y)
222                 moldyn->status|=MOLDYN_STAT_PBY;
223
224         if(z)
225                 moldyn->status|=MOLDYN_STAT_PBZ;
226
227         printf("  x: %s\n",x?"yes":"no");
228         printf("  y: %s\n",y?"yes":"no");
229         printf("  z: %s\n",z?"yes":"no");
230
231         return 0;
232 }
233
234 int set_potential1b(t_moldyn *moldyn,pf_func1b func) {
235
236         moldyn->func1b=func;
237
238         return 0;
239 }
240
241 int set_potential2b(t_moldyn *moldyn,pf_func2b func) {
242
243         moldyn->func2b=func;
244
245         return 0;
246 }
247
248 int set_potential3b_j1(t_moldyn *moldyn,pf_func2b func) {
249
250         moldyn->func3b_j1=func;
251
252         return 0;
253 }
254
255 int set_potential3b_j2(t_moldyn *moldyn,pf_func2b func) {
256
257         moldyn->func3b_j2=func;
258
259         return 0;
260 }
261
262 int set_potential3b_j3(t_moldyn *moldyn,pf_func2b func) {
263
264         moldyn->func3b_j3=func;
265
266         return 0;
267 }
268
269 int set_potential3b_k1(t_moldyn *moldyn,pf_func3b func) {
270
271         moldyn->func3b_k1=func;
272
273         return 0;
274 }
275
276 int set_potential3b_k2(t_moldyn *moldyn,pf_func3b func) {
277
278         moldyn->func3b_k2=func;
279
280         return 0;
281 }
282
283 int set_potential_params(t_moldyn *moldyn,void *params) {
284
285         moldyn->pot_params=params;
286
287         return 0;
288 }
289
290 int set_avg_skip(t_moldyn *moldyn,int skip) {
291
292         printf("[moldyn] skip %d steps before starting average calc\n",skip);
293         moldyn->avg_skip=skip;
294
295         return 0;
296 }
297
298 int moldyn_set_log_dir(t_moldyn *moldyn,char *dir) {
299
300         strncpy(moldyn->vlsdir,dir,127);
301
302         return 0;
303 }
304
305 int moldyn_set_report(t_moldyn *moldyn,char *author,char *title) {
306
307         strncpy(moldyn->rauthor,author,63);
308         strncpy(moldyn->rtitle,title,63);
309
310         return 0;
311 }
312         
313 int moldyn_set_log(t_moldyn *moldyn,u8 type,int timer) {
314
315         char filename[128];
316         int ret;
317
318         printf("[moldyn] set log: ");
319
320         switch(type) {
321                 case LOG_TOTAL_ENERGY:
322                         moldyn->ewrite=timer;
323                         snprintf(filename,127,"%s/energy",moldyn->vlsdir);
324                         moldyn->efd=open(filename,
325                                          O_WRONLY|O_CREAT|O_EXCL,
326                                          S_IRUSR|S_IWUSR);
327                         if(moldyn->efd<0) {
328                                 perror("[moldyn] energy log fd open");
329                                 return moldyn->efd;
330                         }
331                         dprintf(moldyn->efd,"# total energy log file\n");
332                         printf("total energy (%d)\n",timer);
333                         break;
334                 case LOG_TOTAL_MOMENTUM:
335                         moldyn->mwrite=timer;
336                         snprintf(filename,127,"%s/momentum",moldyn->vlsdir);
337                         moldyn->mfd=open(filename,
338                                          O_WRONLY|O_CREAT|O_EXCL,
339                                          S_IRUSR|S_IWUSR);
340                         if(moldyn->mfd<0) {
341                                 perror("[moldyn] momentum log fd open");
342                                 return moldyn->mfd;
343                         }
344                         dprintf(moldyn->efd,"# total momentum log file\n");
345                         printf("total momentum (%d)\n",timer);
346                         break;
347                 case LOG_PRESSURE:
348                         moldyn->pwrite=timer;
349                         snprintf(filename,127,"%s/pressure",moldyn->vlsdir);
350                         moldyn->pfd=open(filename,
351                                          O_WRONLY|O_CREAT|O_EXCL,
352                                          S_IRUSR|S_IWUSR);
353                         if(moldyn->pfd<0) {
354                                 perror("[moldyn] pressure log file\n");
355                                 return moldyn->pfd;
356                         }
357                         dprintf(moldyn->pfd,"# pressure log file\n");
358                         printf("pressure (%d)\n",timer);
359                         break;
360                 case LOG_TEMPERATURE:
361                         moldyn->twrite=timer;
362                         snprintf(filename,127,"%s/temperature",moldyn->vlsdir);
363                         moldyn->tfd=open(filename,
364                                          O_WRONLY|O_CREAT|O_EXCL,
365                                          S_IRUSR|S_IWUSR);
366                         if(moldyn->tfd<0) {
367                                 perror("[moldyn] temperature log file\n");
368                                 return moldyn->tfd;
369                         }
370                         dprintf(moldyn->tfd,"# temperature log file\n");
371                         printf("temperature (%d)\n",timer);
372                         break;
373                 case SAVE_STEP:
374                         moldyn->swrite=timer;
375                         printf("save file (%d)\n",timer);
376                         break;
377                 case VISUAL_STEP:
378                         moldyn->vwrite=timer;
379                         ret=visual_init(moldyn,moldyn->vlsdir);
380                         if(ret<0) {
381                                 printf("[moldyn] visual init failure\n");
382                                 return ret;
383                         }
384                         printf("visual file (%d)\n",timer);
385                         break;
386                 case CREATE_REPORT:
387                         snprintf(filename,127,"%s/report.tex",moldyn->vlsdir);
388                         moldyn->rfd=open(filename,
389                                          O_WRONLY|O_CREAT|O_EXCL,
390                                          S_IRUSR|S_IWUSR);
391                         if(moldyn->rfd<0) {
392                                 perror("[moldyn] report fd open");      
393                                 return moldyn->rfd;
394                         }
395                         printf("report -> ");
396                         if(moldyn->efd) {
397                                 snprintf(filename,127,"%s/e_plot.scr",
398                                          moldyn->vlsdir);
399                                 moldyn->epfd=open(filename,
400                                                  O_WRONLY|O_CREAT|O_EXCL,
401                                                  S_IRUSR|S_IWUSR);
402                                 if(moldyn->epfd<0) {
403                                         perror("[moldyn] energy plot fd open");
404                                         return moldyn->epfd;
405                                 }
406                                 dprintf(moldyn->epfd,e_plot_script);
407                                 close(moldyn->epfd);
408                                 printf("energy ");
409                         }
410                         if(moldyn->pfd) {
411                                 snprintf(filename,127,"%s/pressure_plot.scr",
412                                          moldyn->vlsdir);
413                                 moldyn->ppfd=open(filename,
414                                                   O_WRONLY|O_CREAT|O_EXCL,
415                                                   S_IRUSR|S_IWUSR);
416                                 if(moldyn->ppfd<0) {
417                                         perror("[moldyn] p plot fd open");
418                                         return moldyn->ppfd;
419                                 }
420                                 dprintf(moldyn->ppfd,pressure_plot_script);
421                                 close(moldyn->ppfd);
422                                 printf("pressure ");
423                         }
424                         if(moldyn->tfd) {
425                                 snprintf(filename,127,"%s/temperature_plot.scr",
426                                          moldyn->vlsdir);
427                                 moldyn->tpfd=open(filename,
428                                                   O_WRONLY|O_CREAT|O_EXCL,
429                                                   S_IRUSR|S_IWUSR);
430                                 if(moldyn->tpfd<0) {
431                                         perror("[moldyn] t plot fd open");
432                                         return moldyn->tpfd;
433                                 }
434                                 dprintf(moldyn->tpfd,temperature_plot_script);
435                                 close(moldyn->tpfd);
436                                 printf("temperature ");
437                         }
438                         dprintf(moldyn->rfd,report_start,
439                                 moldyn->rauthor,moldyn->rtitle);
440                         printf("\n");
441                         break;
442                 default:
443                         printf("unknown log type: %02x\n",type);
444                         return -1;
445         }
446
447         return 0;
448 }
449
450 int moldyn_log_shutdown(t_moldyn *moldyn) {
451
452         char sc[256];
453
454         printf("[moldyn] log shutdown\n");
455         if(moldyn->efd) {
456                 close(moldyn->efd);
457                 if(moldyn->rfd) {
458                         dprintf(moldyn->rfd,report_energy);
459                         snprintf(sc,255,"cd %s && gnuplot e_plot.scr",
460                                  moldyn->vlsdir);
461                         system(sc);
462                 }
463         }
464         if(moldyn->mfd) close(moldyn->mfd);
465         if(moldyn->pfd) {
466                 close(moldyn->pfd);
467                 if(moldyn->rfd)
468                         dprintf(moldyn->rfd,report_pressure);
469                         snprintf(sc,255,"cd %s && gnuplot pressure_plot.scr",
470                                  moldyn->vlsdir);
471                         system(sc);
472         }
473         if(moldyn->tfd) {
474                 close(moldyn->tfd);
475                 if(moldyn->rfd)
476                         dprintf(moldyn->rfd,report_temperature);
477                         snprintf(sc,255,"cd %s && gnuplot temperature_plot.scr",
478                                  moldyn->vlsdir);
479                         system(sc);
480         }
481         if(moldyn->rfd) {
482                 dprintf(moldyn->rfd,report_end);
483                 close(moldyn->rfd);
484                 snprintf(sc,255,"cd %s && pdflatex report >/dev/null 2>&1",
485                          moldyn->vlsdir);
486                 system(sc);
487                 snprintf(sc,255,"cd %s && pdflatex report >/dev/null 2>&1",
488                          moldyn->vlsdir);
489                 system(sc);
490                 snprintf(sc,255,"cd %s && dvipdf report >/dev/null 2>&1",
491                          moldyn->vlsdir);
492                 system(sc);
493         }
494
495         return 0;
496 }
497
498 /*
499  * creating lattice functions
500  */
501
502 int create_lattice(t_moldyn *moldyn,u8 type,double lc,int element,double mass,
503                    u8 attr,u8 brand,int a,int b,int c,t_3dvec *origin) {
504
505         int new,count;
506         int ret;
507         t_3dvec orig;
508         void *ptr;
509         t_atom *atom;
510
511         new=a*b*c;
512         count=moldyn->count;
513
514         /* how many atoms do we expect */
515         if(type==CUBIC) new*=1;
516         if(type==FCC) new*=4;
517         if(type==DIAMOND) new*=8;
518
519         /* allocate space for atoms */
520         ptr=realloc(moldyn->atom,(count+new)*sizeof(t_atom));
521         if(!ptr) {
522                 perror("[moldyn] realloc (create lattice)");
523                 return -1;
524         }
525         moldyn->atom=ptr;
526         atom=&(moldyn->atom[count]);
527
528         /* no atoms on the boundaries (only reason: it looks better!) */
529         if(!origin) {
530                 orig.x=0.5*lc;
531                 orig.y=0.5*lc;
532                 orig.z=0.5*lc;
533         }
534         else {
535                 orig.x=origin->x;
536                 orig.y=origin->y;
537                 orig.z=origin->z;
538         }
539
540         switch(type) {
541                 case CUBIC:
542                         set_nn_dist(moldyn,lc);
543                         ret=cubic_init(a,b,c,lc,atom,&orig);
544                         break;
545                 case FCC:
546                         if(!origin)
547                                 v3_scale(&orig,&orig,0.5);
548                         set_nn_dist(moldyn,0.5*sqrt(2.0)*lc);
549                         ret=fcc_init(a,b,c,lc,atom,&orig);
550                         break;
551                 case DIAMOND:
552                         if(!origin)
553                                 v3_scale(&orig,&orig,0.25);
554                         set_nn_dist(moldyn,0.25*sqrt(3.0)*lc);
555                         ret=diamond_init(a,b,c,lc,atom,&orig);
556                         break;
557                 default:
558                         printf("unknown lattice type (%02x)\n",type);
559                         return -1;
560         }
561
562         /* debug */
563         if(ret!=new) {
564                 printf("[moldyn] creating lattice failed\n");
565                 printf("  amount of atoms\n");
566                 printf("  - expected: %d\n",new);
567                 printf("  - created: %d\n",ret);
568                 return -1;
569         }
570
571         moldyn->count+=new;
572         printf("[moldyn] created lattice with %d atoms\n",new);
573
574         for(ret=0;ret<new;ret++) {
575                 atom[ret].element=element;
576                 atom[ret].mass=mass;
577                 atom[ret].attr=attr;
578                 atom[ret].brand=brand;
579                 atom[ret].tag=count+ret;
580                 check_per_bound(moldyn,&(atom[ret].r));
581                 atom[ret].r_0=atom[ret].r;
582         }
583
584         /* update total system mass */
585         total_mass_calc(moldyn);
586
587         return ret;
588 }
589
590 int add_atom(t_moldyn *moldyn,int element,double mass,u8 brand,u8 attr,
591              t_3dvec *r,t_3dvec *v) {
592
593         t_atom *atom;
594         void *ptr;
595         int count;
596         
597         atom=moldyn->atom;
598         count=(moldyn->count)++;
599
600         ptr=realloc(atom,(count+1)*sizeof(t_atom));
601         if(!ptr) {
602                 perror("[moldyn] realloc (add atom)");
603                 return -1;
604         }
605         moldyn->atom=ptr;
606
607         atom=moldyn->atom;
608         atom[count].r=*r;
609         atom[count].v=*v;
610         atom[count].element=element;
611         atom[count].mass=mass;
612         atom[count].brand=brand;
613         atom[count].tag=count;
614         atom[count].attr=attr;
615         check_per_bound(moldyn,&(atom[count].r));
616         atom[count].r_0=atom[count].r;
617
618         /* update total system mass */
619         total_mass_calc(moldyn);
620
621         return 0;
622 }
623
624 int del_atom(t_moldyn *moldyn,int tag) {
625
626         t_atom *new,*old;
627         int cnt;
628
629         old=moldyn->atom;
630
631         new=(t_atom *)malloc((moldyn->count-1)*sizeof(t_atom));
632         if(!new) {
633                 perror("[moldyn]malloc (del atom)");
634                 return -1;
635         }
636
637         for(cnt=0;cnt<tag;cnt++)
638                 new[cnt]=old[cnt];
639         
640         for(cnt=tag+1;cnt<moldyn->count;cnt++) {
641                 new[cnt-1]=old[cnt];
642                 new[cnt-1].tag=cnt-1;
643         }
644
645         moldyn->count-=1;
646         moldyn->atom=new;
647
648         free(old);
649
650         return 0;
651 }
652
653 /* cubic init */
654 int cubic_init(int a,int b,int c,double lc,t_atom *atom,t_3dvec *origin) {
655
656         int count;
657         t_3dvec r;
658         int i,j,k;
659         t_3dvec o;
660
661         count=0;
662         if(origin)
663                 v3_copy(&o,origin);
664         else
665                 v3_zero(&o);
666
667         r.x=o.x;
668         for(i=0;i<a;i++) {
669                 r.y=o.y;
670                 for(j=0;j<b;j++) {
671                         r.z=o.z;
672                         for(k=0;k<c;k++) {
673                                 v3_copy(&(atom[count].r),&r);
674                                 count+=1;
675                                 r.z+=lc;
676                         }
677                         r.y+=lc;
678                 }
679                 r.x+=lc;
680         }
681
682         for(i=0;i<count;i++) {
683                 atom[i].r.x-=(a*lc)/2.0;
684                 atom[i].r.y-=(b*lc)/2.0;
685                 atom[i].r.z-=(c*lc)/2.0;
686         }
687
688         return count;
689 }
690
691 /* fcc lattice init */
692 int fcc_init(int a,int b,int c,double lc,t_atom *atom,t_3dvec *origin) {
693
694         int count;
695         int i,j,k,l;
696         t_3dvec o,r,n;
697         t_3dvec basis[3];
698
699         count=0;
700         if(origin)
701                 v3_copy(&o,origin);
702         else
703                 v3_zero(&o);
704
705         /* construct the basis */
706         memset(basis,0,3*sizeof(t_3dvec));
707         basis[0].x=0.5*lc;
708         basis[0].y=0.5*lc;
709         basis[1].x=0.5*lc;
710         basis[1].z=0.5*lc;
711         basis[2].y=0.5*lc;
712         basis[2].z=0.5*lc;
713
714         /* fill up the room */
715         r.x=o.x;
716         for(i=0;i<a;i++) {
717                 r.y=o.y;
718                 for(j=0;j<b;j++) {
719                         r.z=o.z;
720                         for(k=0;k<c;k++) {
721                                 /* first atom */
722                                 v3_copy(&(atom[count].r),&r);
723                                 count+=1;
724                                 r.z+=lc;
725                                 /* the three face centered atoms */
726                                 for(l=0;l<3;l++) {
727                                         v3_add(&n,&r,&basis[l]);
728                                         v3_copy(&(atom[count].r),&n);
729                                         count+=1;
730                                 }
731                         }
732                         r.y+=lc;
733                 }
734                 r.x+=lc;
735         }
736                                 
737         /* coordinate transformation */
738         for(i=0;i<count;i++) {
739                 atom[i].r.x-=(a*lc)/2.0;
740                 atom[i].r.y-=(b*lc)/2.0;
741                 atom[i].r.z-=(c*lc)/2.0;
742         }
743
744         return count;
745 }
746
747 int diamond_init(int a,int b,int c,double lc,t_atom *atom,t_3dvec *origin) {
748
749         int count;
750         t_3dvec o;
751
752         count=fcc_init(a,b,c,lc,atom,origin);
753
754         o.x=0.25*lc;
755         o.y=0.25*lc;
756         o.z=0.25*lc;
757
758         if(origin) v3_add(&o,&o,origin);
759
760         count+=fcc_init(a,b,c,lc,&atom[count],&o);
761
762         return count;
763 }
764
765 int destroy_atoms(t_moldyn *moldyn) {
766
767         if(moldyn->atom) free(moldyn->atom);
768
769         return 0;
770 }
771
772 int thermal_init(t_moldyn *moldyn,u8 equi_init) {
773
774         /*
775          * - gaussian distribution of velocities
776          * - zero total momentum
777          * - velocity scaling (E = 3/2 N k T), E: kinetic energy
778          */
779
780         int i;
781         double v,sigma;
782         t_3dvec p_total,delta;
783         t_atom *atom;
784         t_random *random;
785
786         atom=moldyn->atom;
787         random=&(moldyn->random);
788
789         printf("[moldyn] thermal init (equi init: %s)\n",equi_init?"yes":"no");
790
791         /* gaussian distribution of velocities */
792         v3_zero(&p_total);
793         for(i=0;i<moldyn->count;i++) {
794                 sigma=sqrt(2.0*K_BOLTZMANN*moldyn->t_ref/atom[i].mass);
795                 /* x direction */
796                 v=sigma*rand_get_gauss(random);
797                 atom[i].v.x=v;
798                 p_total.x+=atom[i].mass*v;
799                 /* y direction */
800                 v=sigma*rand_get_gauss(random);
801                 atom[i].v.y=v;
802                 p_total.y+=atom[i].mass*v;
803                 /* z direction */
804                 v=sigma*rand_get_gauss(random);
805                 atom[i].v.z=v;
806                 p_total.z+=atom[i].mass*v;
807         }
808
809         /* zero total momentum */
810         v3_scale(&p_total,&p_total,1.0/moldyn->count);
811         for(i=0;i<moldyn->count;i++) {
812                 v3_scale(&delta,&p_total,1.0/atom[i].mass);
813                 v3_sub(&(atom[i].v),&(atom[i].v),&delta);
814         }
815
816         /* velocity scaling */
817         scale_velocity(moldyn,equi_init);
818
819         return 0;
820 }
821
822 double total_mass_calc(t_moldyn *moldyn) {
823
824         int i;
825
826         moldyn->mass=0.0;
827
828         for(i=0;i<moldyn->count;i++)
829                 moldyn->mass+=moldyn->atom[i].mass;
830
831         return moldyn->mass;
832 }
833
834 double temperature_calc(t_moldyn *moldyn) {
835
836         /* assume up to date kinetic energy, which is 3/2 N k_B T */
837
838         moldyn->t=(2.0*moldyn->ekin)/(3.0*K_BOLTZMANN*moldyn->count);
839
840         return moldyn->t;
841 }
842
843 double get_temperature(t_moldyn *moldyn) {
844
845         return moldyn->t;
846 }
847
848 int scale_velocity(t_moldyn *moldyn,u8 equi_init) {
849
850         int i;
851         double e,scale;
852         t_atom *atom;
853         int count;
854
855         atom=moldyn->atom;
856
857         /*
858          * - velocity scaling (E = 3/2 N k T), E: kinetic energy
859          */
860
861         /* get kinetic energy / temperature & count involved atoms */
862         e=0.0;
863         count=0;
864         for(i=0;i<moldyn->count;i++) {
865                 if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB)) {
866                         e+=atom[i].mass*v3_absolute_square(&(atom[i].v));
867                         count+=1;
868                 }
869         }
870         e*=0.5;
871         if(count!=0) moldyn->t=e/(1.5*count*K_BOLTZMANN);
872         else return 0;  /* no atoms involved in scaling! */
873         
874         /* (temporary) hack for e,t = 0 */
875         if(e==0.0) {
876         moldyn->t=0.0;
877                 if(moldyn->t_ref!=0.0) {
878                         thermal_init(moldyn,equi_init);
879                         return 0;
880                 }
881                 else
882                         return 0; /* no scaling needed */
883         }
884
885
886         /* get scaling factor */
887         scale=moldyn->t_ref/moldyn->t;
888         if(equi_init&TRUE)
889                 scale*=2.0;
890         else
891                 if(moldyn->pt_scale&T_SCALE_BERENDSEN)
892                         scale=1.0+(scale-1.0)/moldyn->t_tc;
893         scale=sqrt(scale);
894
895         /* velocity scaling */
896         for(i=0;i<moldyn->count;i++) {
897                 if((equi_init&TRUE)||(atom[i].attr&ATOM_ATTR_HB))
898                         v3_scale(&(atom[i].v),&(atom[i].v),scale);
899         }
900
901         return 0;
902 }
903
904 double ideal_gas_law_pressure(t_moldyn *moldyn) {
905
906         double p;
907
908         p=moldyn->count*moldyn->t*K_BOLTZMANN/moldyn->volume;
909
910         return p;
911 }
912
913 double virial_sum(t_moldyn *moldyn) {
914
915         int i;
916         double v;
917         t_virial *virial;
918
919         /* virial (sum over atom virials) */
920         v=0.0;
921         for(i=0;i<moldyn->count;i++) {
922                 virial=&(moldyn->atom[i].virial);
923                 v+=(virial->xx+virial->yy+virial->zz);
924         }
925         moldyn->virial=v;
926
927         /* global virial (absolute coordinates) */
928         virial=&(moldyn->gvir);
929         moldyn->gv=virial->xx+virial->yy+virial->zz;
930
931         return moldyn->virial;
932 }
933
934 double pressure_calc(t_moldyn *moldyn) {
935
936         /*
937          * PV = NkT + <W>
938          * with W = 1/3 sum_i f_i r_i (- skipped!)
939          * virial = sum_i f_i r_i
940          * 
941          * => P = (2 Ekin + virial) / (3V)
942          */
943
944         /* assume up to date virial & up to date kinetic energy */
945
946         /* pressure (atom virials) */
947         moldyn->p=2.0*moldyn->ekin+moldyn->virial;
948         moldyn->p/=(3.0*moldyn->volume);
949
950         /* pressure (absolute coordinates) */
951         moldyn->gp=2.0*moldyn->ekin+moldyn->gv;
952         moldyn->gp/=(3.0*moldyn->volume);
953
954         return moldyn->p;
955 }
956
957 int average_and_fluctuation_calc(t_moldyn *moldyn) {
958
959         if(moldyn->total_steps<moldyn->avg_skip)
960                 return 0;
961
962         int denom=moldyn->total_steps+1-moldyn->avg_skip;
963
964         /* assume up to date energies, temperature, pressure etc */
965
966         /* kinetic energy */
967         moldyn->k_sum+=moldyn->ekin;
968         moldyn->k2_sum+=(moldyn->ekin*moldyn->ekin);
969         moldyn->k_avg=moldyn->k_sum/denom;
970         moldyn->k2_avg=moldyn->k2_sum/denom;
971         moldyn->dk2_avg=moldyn->k2_avg-(moldyn->k_avg*moldyn->k_avg);
972
973         /* potential energy */
974         moldyn->v_sum+=moldyn->energy;
975         moldyn->v2_sum+=(moldyn->energy*moldyn->energy);
976         moldyn->v_avg=moldyn->v_sum/denom;
977         moldyn->v2_avg=moldyn->v2_sum/denom;
978         moldyn->dv2_avg=moldyn->v2_avg-(moldyn->v_avg*moldyn->v_avg);
979
980         /* temperature */
981         moldyn->t_sum+=moldyn->t;
982         moldyn->t_avg=moldyn->t_sum/denom;
983
984         /* virial */
985         moldyn->virial_sum+=moldyn->virial;
986         moldyn->virial_avg=moldyn->virial_sum/denom;
987         moldyn->gv_sum+=moldyn->gv;
988         moldyn->gv_avg=moldyn->gv_sum/denom;
989
990         /* pressure */
991         moldyn->p_sum+=moldyn->p;
992         moldyn->p_avg=moldyn->p_sum/denom;
993         moldyn->gp_sum+=moldyn->gp;
994         moldyn->gp_avg=moldyn->gp_sum/denom;
995
996         return 0;
997 }
998
999 int get_heat_capacity(t_moldyn *moldyn) {
1000
1001         double temp2,ighc;
1002
1003         /* averages needed for heat capacity calc */
1004         if(moldyn->total_steps<moldyn->avg_skip)
1005                 return 0;
1006
1007         /* (temperature average)^2 */
1008         temp2=moldyn->t_avg*moldyn->t_avg;
1009         printf("[moldyn] specific heat capacity for T=%f K [J/(kg K)]\n",
1010                moldyn->t_avg);
1011
1012         /* ideal gas contribution */
1013         ighc=3.0*moldyn->count*K_BOLTZMANN/2.0;
1014         printf("  ideal gas contribution: %f\n",
1015                ighc/moldyn->mass*KILOGRAM/JOULE);
1016
1017         /* specific heat for nvt ensemble */
1018         moldyn->c_v_nvt=moldyn->dv2_avg/(K_BOLTZMANN*temp2)+ighc;
1019         moldyn->c_v_nvt/=moldyn->mass;
1020
1021         /* specific heat for nve ensemble */
1022         moldyn->c_v_nve=ighc/(1.0-(moldyn->dv2_avg/(ighc*K_BOLTZMANN*temp2)));
1023         moldyn->c_v_nve/=moldyn->mass;
1024
1025         printf("  NVE: %f\n",moldyn->c_v_nve*KILOGRAM/JOULE);
1026         printf("  NVT: %f\n",moldyn->c_v_nvt*KILOGRAM/JOULE);
1027 printf("  --> <dV2> sim: %f experimental: %f\n",moldyn->dv2_avg,1.5*moldyn->count*K_B2*moldyn->t_avg*moldyn->t_avg*(1.0-1.5*moldyn->count*K_BOLTZMANN/(700*moldyn->mass*JOULE/KILOGRAM)));
1028
1029         return 0;
1030 }
1031
1032 double thermodynamic_pressure_calc(t_moldyn *moldyn) {
1033
1034         t_3dvec dim,*tp;
1035         double u_up,u_down,dv;
1036         double scale,p;
1037         t_atom *store;
1038
1039         /*
1040          * dU = - p dV
1041          *
1042          * => p = - dU/dV
1043          *
1044          */
1045
1046         scale=0.00001;
1047         dv=8*scale*scale*scale*moldyn->volume;
1048
1049         store=malloc(moldyn->count*sizeof(t_atom));
1050         if(store==NULL) {
1051                 printf("[moldyn] allocating store mem failed\n");
1052                 return -1;
1053         }
1054
1055         /* save unscaled potential energy + atom/dim configuration */
1056         memcpy(store,moldyn->atom,moldyn->count*sizeof(t_atom));
1057         dim=moldyn->dim;
1058
1059         /* scale up dimension and atom positions */
1060         scale_dim(moldyn,SCALE_UP,scale,TRUE,TRUE,TRUE);
1061         scale_atoms(moldyn,SCALE_UP,scale,TRUE,TRUE,TRUE);
1062         link_cell_shutdown(moldyn);
1063         link_cell_init(moldyn,QUIET);
1064         potential_force_calc(moldyn);
1065         u_up=moldyn->energy;
1066
1067         /* restore atomic configuration + dim */
1068         memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom));
1069         moldyn->dim=dim;
1070
1071         /* scale down dimension and atom positions */
1072         scale_dim(moldyn,SCALE_DOWN,scale,TRUE,TRUE,TRUE);
1073         scale_atoms(moldyn,SCALE_DOWN,scale,TRUE,TRUE,TRUE);
1074         link_cell_shutdown(moldyn);
1075         link_cell_init(moldyn,QUIET);
1076         potential_force_calc(moldyn);
1077         u_down=moldyn->energy;
1078         
1079         /* calculate pressure */
1080         p=-(u_up-u_down)/dv;
1081 printf("-------> %.10f %.10f %f\n",u_up/EV/moldyn->count,u_down/EV/moldyn->count,p/BAR);
1082
1083         /* restore atomic configuration + dim */
1084         memcpy(moldyn->atom,store,moldyn->count*sizeof(t_atom));
1085         moldyn->dim=dim;
1086
1087         /* restore energy */
1088         potential_force_calc(moldyn);
1089
1090         link_cell_shutdown(moldyn);
1091         link_cell_init(moldyn,QUIET);
1092
1093         return p;
1094 }
1095
1096 double get_pressure(t_moldyn *moldyn) {
1097
1098         return moldyn->p;
1099
1100 }
1101
1102 int scale_dim(t_moldyn *moldyn,u8 dir,double scale,u8 x,u8 y,u8 z) {
1103
1104         t_3dvec *dim;
1105
1106         dim=&(moldyn->dim);
1107
1108         if(dir==SCALE_UP)
1109                 scale=1.0+scale;
1110
1111         if(dir==SCALE_DOWN)
1112                 scale=1.0-scale;
1113
1114         if(x) dim->x*=scale;
1115         if(y) dim->y*=scale;
1116         if(z) dim->z*=scale;
1117
1118         return 0;
1119 }
1120
1121 int scale_atoms(t_moldyn *moldyn,u8 dir,double scale,u8 x,u8 y,u8 z) {
1122
1123         int i;
1124         t_3dvec *r;
1125
1126         if(dir==SCALE_UP)
1127                 scale=1.0+scale;
1128
1129         if(dir==SCALE_DOWN)
1130                 scale=1.0-scale;
1131
1132         for(i=0;i<moldyn->count;i++) {
1133                 r=&(moldyn->atom[i].r);
1134                 if(x) r->x*=scale;
1135                 if(y) r->y*=scale;
1136                 if(z) r->z*=scale;
1137         }
1138
1139         return 0;
1140 }
1141
1142 int scale_volume(t_moldyn *moldyn) {
1143
1144         t_3dvec *dim,*vdim;
1145         double scale;
1146         t_linkcell *lc;
1147
1148         vdim=&(moldyn->vis.dim);
1149         dim=&(moldyn->dim);
1150         lc=&(moldyn->lc);
1151
1152         /* scaling factor */
1153         if(moldyn->pt_scale&P_SCALE_BERENDSEN) {
1154                 scale=1.0-(moldyn->p_ref-moldyn->p)/moldyn->p_tc;
1155                 scale=pow(scale,ONE_THIRD);
1156         }
1157         else {
1158                 scale=pow(moldyn->p/moldyn->p_ref,ONE_THIRD);
1159         }
1160 moldyn->debug=scale;
1161
1162         /* scale the atoms and dimensions */
1163         scale_atoms(moldyn,SCALE_DIRECT,scale,TRUE,TRUE,TRUE);
1164         scale_dim(moldyn,SCALE_DIRECT,scale,TRUE,TRUE,TRUE);
1165
1166         /* visualize dimensions */
1167         if(vdim->x!=0) {
1168                 vdim->x=dim->x;
1169                 vdim->y=dim->y;
1170                 vdim->z=dim->z;
1171         }
1172
1173         /* recalculate scaled volume */
1174         moldyn->volume=dim->x*dim->y*dim->z;
1175
1176         /* adjust/reinit linkcell */
1177         if(((int)(dim->x/moldyn->cutoff)!=lc->nx)||
1178            ((int)(dim->y/moldyn->cutoff)!=lc->ny)||
1179            ((int)(dim->z/moldyn->cutoff)!=lc->nx)) {
1180                 link_cell_shutdown(moldyn);
1181                 link_cell_init(moldyn,QUIET);
1182         } else {
1183                 lc->x*=scale;
1184                 lc->y*=scale;
1185                 lc->z*=scale;
1186         }
1187
1188         return 0;
1189
1190 }
1191
1192 double e_kin_calc(t_moldyn *moldyn) {
1193
1194         int i;
1195         t_atom *atom;
1196
1197         atom=moldyn->atom;
1198         moldyn->ekin=0.0;
1199
1200         for(i=0;i<moldyn->count;i++) {
1201                 atom[i].ekin=0.5*atom[i].mass*v3_absolute_square(&(atom[i].v));
1202                 moldyn->ekin+=atom[i].ekin;
1203         }
1204
1205         return moldyn->ekin;
1206 }
1207
1208 double get_total_energy(t_moldyn *moldyn) {
1209
1210         return(moldyn->ekin+moldyn->energy);
1211 }
1212
1213 t_3dvec get_total_p(t_moldyn *moldyn) {
1214
1215         t_3dvec p,p_total;
1216         int i;
1217         t_atom *atom;
1218
1219         atom=moldyn->atom;
1220
1221         v3_zero(&p_total);
1222         for(i=0;i<moldyn->count;i++) {
1223                 v3_scale(&p,&(atom[i].v),atom[i].mass);
1224                 v3_add(&p_total,&p_total,&p);
1225         }
1226
1227         return p_total;
1228 }
1229
1230 double estimate_time_step(t_moldyn *moldyn,double nn_dist) {
1231
1232         double tau;
1233
1234         /* nn_dist is the nearest neighbour distance */
1235
1236         tau=(0.05*nn_dist*moldyn->atom[0].mass)/sqrt(3.0*K_BOLTZMANN*moldyn->t);
1237
1238         return tau;     
1239 }
1240
1241 /*
1242  * numerical tricks
1243  */
1244
1245 /* linked list / cell method */
1246
1247 int link_cell_init(t_moldyn *moldyn,u8 vol) {
1248
1249         t_linkcell *lc;
1250         int i;
1251
1252         lc=&(moldyn->lc);
1253
1254         /* partitioning the md cell */
1255         lc->nx=moldyn->dim.x/moldyn->cutoff;
1256         lc->x=moldyn->dim.x/lc->nx;
1257         lc->ny=moldyn->dim.y/moldyn->cutoff;
1258         lc->y=moldyn->dim.y/lc->ny;
1259         lc->nz=moldyn->dim.z/moldyn->cutoff;
1260         lc->z=moldyn->dim.z/lc->nz;
1261
1262         lc->cells=lc->nx*lc->ny*lc->nz;
1263         lc->subcell=malloc(lc->cells*sizeof(t_list));
1264
1265         if(lc->cells<27)
1266                 printf("[moldyn] FATAL: less then 27 subcells!\n");
1267
1268         if(vol) {
1269                 printf("[moldyn] initializing linked cells (%d)\n",lc->cells);
1270                 printf("  x: %d x %f A\n",lc->nx,lc->x);
1271                 printf("  y: %d x %f A\n",lc->ny,lc->y);
1272                 printf("  z: %d x %f A\n",lc->nz,lc->z);
1273         }
1274
1275         for(i=0;i<lc->cells;i++)
1276                 list_init_f(&(lc->subcell[i]));
1277
1278         link_cell_update(moldyn);
1279         
1280         return 0;
1281 }
1282
1283 int link_cell_update(t_moldyn *moldyn) {
1284
1285         int count,i,j,k;
1286         int nx,ny;
1287         t_atom *atom;
1288         t_linkcell *lc;
1289         double x,y,z;
1290
1291         atom=moldyn->atom;
1292         lc=&(moldyn->lc);
1293
1294         nx=lc->nx;
1295         ny=lc->ny;
1296
1297         x=moldyn->dim.x/2;
1298         y=moldyn->dim.y/2;
1299         z=moldyn->dim.z/2;
1300
1301         for(i=0;i<lc->cells;i++)
1302                 list_destroy_f(&(lc->subcell[i]));
1303         
1304         for(count=0;count<moldyn->count;count++) {
1305                 i=((atom[count].r.x+(moldyn->dim.x/2))/lc->x);
1306                 j=((atom[count].r.y+(moldyn->dim.y/2))/lc->y);
1307                 k=((atom[count].r.z+(moldyn->dim.z/2))/lc->z);
1308                 list_add_immediate_f(&(lc->subcell[i+j*nx+k*nx*ny]),
1309                                      &(atom[count]));
1310         }
1311
1312         return 0;
1313 }
1314
1315 int link_cell_neighbour_index(t_moldyn *moldyn,int i,int j,int k,t_list *cell) {
1316
1317         t_linkcell *lc;
1318         int a;
1319         int count1,count2;
1320         int ci,cj,ck;
1321         int nx,ny,nz;
1322         int x,y,z;
1323         u8 bx,by,bz;
1324
1325         lc=&(moldyn->lc);
1326         nx=lc->nx;
1327         ny=lc->ny;
1328         nz=lc->nz;
1329         count1=1;
1330         count2=27;
1331         a=nx*ny;
1332
1333         cell[0]=lc->subcell[i+j*nx+k*a];
1334         for(ci=-1;ci<=1;ci++) {
1335                 bx=0;
1336                 x=i+ci;
1337                 if((x<0)||(x>=nx)) {
1338                         x=(x+nx)%nx;
1339                         bx=1;
1340                 }
1341                 for(cj=-1;cj<=1;cj++) {
1342                         by=0;
1343                         y=j+cj;
1344                         if((y<0)||(y>=ny)) {
1345                                 y=(y+ny)%ny;
1346                                 by=1;
1347                         }
1348                         for(ck=-1;ck<=1;ck++) {
1349                                 bz=0;
1350                                 z=k+ck;
1351                                 if((z<0)||(z>=nz)) {
1352                                         z=(z+nz)%nz;
1353                                         bz=1;
1354                                 }
1355                                 if(!(ci|cj|ck)) continue;
1356                                 if(bx|by|bz) {
1357                                         cell[--count2]=lc->subcell[x+y*nx+z*a];
1358                                 }
1359                                 else {
1360                                         cell[count1++]=lc->subcell[x+y*nx+z*a];
1361                                 }
1362                         }
1363                 }
1364         }
1365
1366         lc->dnlc=count1;
1367
1368         return count1;
1369 }
1370
1371 int link_cell_shutdown(t_moldyn *moldyn) {
1372
1373         int i;
1374         t_linkcell *lc;
1375
1376         lc=&(moldyn->lc);
1377
1378         for(i=0;i<lc->nx*lc->ny*lc->nz;i++)
1379                 list_destroy_f(&(moldyn->lc.subcell[i]));
1380
1381         free(lc->subcell);
1382
1383         return 0;
1384 }
1385
1386 int moldyn_add_schedule(t_moldyn *moldyn,int runs,double tau) {
1387
1388         int count;
1389         void *ptr;
1390         t_moldyn_schedule *schedule;
1391
1392         schedule=&(moldyn->schedule);
1393         count=++(schedule->total_sched);
1394
1395         ptr=realloc(schedule->runs,count*sizeof(int));
1396         if(!ptr) {
1397                 perror("[moldyn] realloc (runs)");
1398                 return -1;
1399         }
1400         schedule->runs=ptr;
1401         schedule->runs[count-1]=runs;
1402
1403         ptr=realloc(schedule->tau,count*sizeof(double));
1404         if(!ptr) {
1405                 perror("[moldyn] realloc (tau)");
1406                 return -1;
1407         }
1408         schedule->tau=ptr;
1409         schedule->tau[count-1]=tau;
1410
1411         printf("[moldyn] schedule added:\n");
1412         printf("  number: %d | runs: %d | tau: %f\n",count-1,runs,tau);
1413                                        
1414
1415         return 0;
1416 }
1417
1418 int moldyn_set_schedule_hook(t_moldyn *moldyn,set_hook hook,void *hook_params) {
1419
1420         moldyn->schedule.hook=hook;
1421         moldyn->schedule.hook_params=hook_params;
1422         
1423         return 0;
1424 }
1425
1426 /*
1427  *
1428  * 'integration of newtons equation' - algorithms
1429  *
1430  */
1431
1432 /* start the integration */
1433
1434 int moldyn_integrate(t_moldyn *moldyn) {
1435
1436         int i;
1437         unsigned int e,m,s,v,p,t;
1438         t_3dvec momentum;
1439         t_moldyn_schedule *sched;
1440         t_atom *atom;
1441         int fd;
1442         char dir[128];
1443         double ds;
1444         double energy_scale;
1445         struct timeval t1,t2;
1446         //double tp;
1447
1448         sched=&(moldyn->schedule);
1449         atom=moldyn->atom;
1450
1451         /* initialize linked cell method */
1452         link_cell_init(moldyn,VERBOSE);
1453
1454         /* logging & visualization */
1455         e=moldyn->ewrite;
1456         m=moldyn->mwrite;
1457         s=moldyn->swrite;
1458         v=moldyn->vwrite;
1459         p=moldyn->pwrite;
1460         t=moldyn->twrite;
1461
1462         /* sqaure of some variables */
1463         moldyn->tau_square=moldyn->tau*moldyn->tau;
1464         moldyn->cutoff_square=moldyn->cutoff*moldyn->cutoff;
1465
1466         /* get current time */
1467         gettimeofday(&t1,NULL);
1468
1469         /* calculate initial forces */
1470         potential_force_calc(moldyn);
1471 #ifdef DEBUG
1472 //return 0;
1473 #endif
1474
1475         /* some stupid checks before we actually start calculating bullshit */
1476         if(moldyn->cutoff>0.5*moldyn->dim.x)
1477                 printf("[moldyn] warning: cutoff > 0.5 x dim.x\n");
1478         if(moldyn->cutoff>0.5*moldyn->dim.y)
1479                 printf("[moldyn] warning: cutoff > 0.5 x dim.y\n");
1480         if(moldyn->cutoff>0.5*moldyn->dim.z)
1481                 printf("[moldyn] warning: cutoff > 0.5 x dim.z\n");
1482         ds=0.5*atom[0].f.x*moldyn->tau_square/atom[0].mass;
1483         if(ds>0.05*moldyn->nnd)
1484                 printf("[moldyn] warning: forces too high / tau too small!\n");
1485
1486         /* zero absolute time */
1487         moldyn->time=0.0;
1488         moldyn->total_steps=0;
1489
1490         /* debugging, ignore */
1491         moldyn->debug=0;
1492
1493         /* tell the world */
1494         printf("[moldyn] integration start, go get a coffee ...\n");
1495
1496         /* executing the schedule */
1497         sched->count=0;
1498         while(sched->count<sched->total_sched) {
1499
1500                 /* setting amount of runs and finite time step size */
1501                 moldyn->tau=sched->tau[sched->count];
1502                 moldyn->tau_square=moldyn->tau*moldyn->tau;
1503                 moldyn->time_steps=sched->runs[sched->count];
1504
1505                 /* energy scaling factor (might change!) */
1506                 energy_scale=moldyn->count*EV;
1507
1508         /* integration according to schedule */
1509
1510         for(i=0;i<moldyn->time_steps;i++) {
1511
1512                 /* integration step */
1513                 moldyn->integrate(moldyn);
1514
1515                 /* calculate kinetic energy, temperature and pressure */
1516                 e_kin_calc(moldyn);
1517                 temperature_calc(moldyn);
1518                 virial_sum(moldyn);
1519                 pressure_calc(moldyn);
1520                 average_and_fluctuation_calc(moldyn);
1521
1522                 /* p/t scaling */
1523                 if(moldyn->pt_scale&(T_SCALE_BERENDSEN|T_SCALE_DIRECT))
1524                         scale_velocity(moldyn,FALSE);
1525                 if(moldyn->pt_scale&(P_SCALE_BERENDSEN|P_SCALE_DIRECT))
1526                         scale_volume(moldyn);
1527
1528                 /* check for log & visualization */
1529                 if(e) {
1530                         if(!(moldyn->total_steps%e))
1531                                 dprintf(moldyn->efd,
1532                                         "%f %f %f %f\n",
1533                                         moldyn->time,moldyn->ekin/energy_scale,
1534                                         moldyn->energy/energy_scale,
1535                                         get_total_energy(moldyn)/energy_scale);
1536                 }
1537                 if(m) {
1538                         if(!(moldyn->total_steps%m)) {
1539                                 momentum=get_total_p(moldyn);
1540                                 dprintf(moldyn->mfd,
1541                                         "%f %f %f %f %f\n",moldyn->time,
1542                                         momentum.x,momentum.y,momentum.z,
1543                                         v3_norm(&momentum));
1544                         }
1545                 }
1546                 if(p) {
1547                         if(!(moldyn->total_steps%p)) {
1548                                 dprintf(moldyn->pfd,
1549                                         "%f %f %f %f %f\n",moldyn->time,
1550                                          moldyn->p/BAR,moldyn->p_avg/BAR,
1551                                          moldyn->gp/BAR,moldyn->gp_avg/BAR);
1552                         }
1553                 }
1554                 if(t) {
1555                         if(!(moldyn->total_steps%t)) {
1556                                 dprintf(moldyn->tfd,
1557                                         "%f %f %f\n",
1558                                         moldyn->time,moldyn->t,moldyn->t_avg);
1559                         }
1560                 }
1561                 if(s) {
1562                         if(!(moldyn->total_steps%s)) {
1563                                 snprintf(dir,128,"%s/s-%07.f.save",
1564                                          moldyn->vlsdir,moldyn->time);
1565                                 fd=open(dir,O_WRONLY|O_TRUNC|O_CREAT,
1566                                         S_IRUSR|S_IWUSR);
1567                                 if(fd<0) perror("[moldyn] save fd open");
1568                                 else {
1569                                         write(fd,moldyn,sizeof(t_moldyn));
1570                                         write(fd,moldyn->atom,
1571                                               moldyn->count*sizeof(t_atom));
1572                                 }
1573                                 close(fd);
1574                         }       
1575                 }
1576                 if(v) {
1577                         if(!(moldyn->total_steps%v)) {
1578                                 visual_atoms(moldyn);
1579                         }
1580                 }
1581
1582                 /* display progress */
1583                 //if(!(moldyn->total_steps%10)) {
1584                         /* get current time */
1585                         gettimeofday(&t2,NULL);
1586
1587         printf("\rsched:%d, steps:%d, T:%3.1f/%3.1f P:%4.1f/%4.1f V:%6.1f (%d)",
1588                sched->count,i,
1589                moldyn->t,moldyn->t_avg,
1590                moldyn->p_avg/BAR,moldyn->gp_avg/BAR,
1591                moldyn->volume,
1592                (int)(t2.tv_sec-t1.tv_sec));
1593         fflush(stdout);
1594
1595                         /* copy over time */
1596                         t1=t2;
1597                 //}
1598
1599                 /* increase absolute time */
1600                 moldyn->time+=moldyn->tau;
1601                 moldyn->total_steps+=1;
1602
1603         }
1604
1605                 /* check for hooks */
1606                 if(sched->hook) {
1607                         printf("\n ## schedule hook %d/%d start ##\n",
1608                                sched->count+1,sched->total_sched-1);
1609                         sched->hook(moldyn,sched->hook_params);
1610                         printf(" ## schedule hook end ##\n");
1611                 }
1612
1613                 /* increase the schedule counter */
1614                 sched->count+=1;
1615
1616         }
1617
1618         return 0;
1619 }
1620
1621 /* velocity verlet */
1622
1623 int velocity_verlet(t_moldyn *moldyn) {
1624
1625         int i,count;
1626         double tau,tau_square,h;
1627         t_3dvec delta;
1628         t_atom *atom;
1629
1630         atom=moldyn->atom;
1631         count=moldyn->count;
1632         tau=moldyn->tau;
1633         tau_square=moldyn->tau_square;
1634
1635         for(i=0;i<count;i++) {
1636                 /* new positions */
1637                 h=0.5/atom[i].mass;
1638                 v3_scale(&delta,&(atom[i].v),tau);
1639                 v3_add(&(atom[i].r),&(atom[i].r),&delta);
1640                 v3_scale(&delta,&(atom[i].f),h*tau_square);
1641                 v3_add(&(atom[i].r),&(atom[i].r),&delta);
1642                 check_per_bound(moldyn,&(atom[i].r));
1643
1644                 /* velocities [actually v(t+tau/2)] */
1645                 v3_scale(&delta,&(atom[i].f),h*tau);
1646                 v3_add(&(atom[i].v),&(atom[i].v),&delta);
1647         }
1648
1649         /* neighbour list update */
1650         link_cell_update(moldyn);
1651
1652         /* forces depending on chosen potential */
1653         potential_force_calc(moldyn);
1654
1655         for(i=0;i<count;i++) {
1656                 /* again velocities [actually v(t+tau)] */
1657                 v3_scale(&delta,&(atom[i].f),0.5*tau/atom[i].mass);
1658                 v3_add(&(atom[i].v),&(atom[i].v),&delta);
1659         }
1660
1661         return 0;
1662 }
1663
1664
1665 /*
1666  *
1667  * potentials & corresponding forces & virial routine
1668  * 
1669  */
1670
1671 /* generic potential and force calculation */
1672
1673 int potential_force_calc(t_moldyn *moldyn) {
1674
1675         int i,j,k,count;
1676         t_atom *itom,*jtom,*ktom;
1677         t_virial *virial;
1678         t_linkcell *lc;
1679         t_list neighbour_i[27];
1680         t_list neighbour_i2[27];
1681         t_list *this,*that;
1682         u8 bc_ij,bc_ik;
1683         int dnlc;
1684
1685         count=moldyn->count;
1686         itom=moldyn->atom;
1687         lc=&(moldyn->lc);
1688
1689         /* reset energy */
1690         moldyn->energy=0.0;
1691
1692         /* reset global virial */
1693         memset(&(moldyn->gvir),0,sizeof(t_virial));
1694
1695         /* reset force, site energy and virial of every atom */
1696         for(i=0;i<count;i++) {
1697
1698                 /* reset force */
1699                 v3_zero(&(itom[i].f));
1700
1701                 /* reset virial */
1702                 virial=(&(itom[i].virial));
1703                 virial->xx=0.0;
1704                 virial->yy=0.0;
1705                 virial->zz=0.0;
1706                 virial->xy=0.0;
1707                 virial->xz=0.0;
1708                 virial->yz=0.0;
1709         
1710                 /* reset site energy */
1711                 itom[i].e=0.0;
1712
1713         }
1714
1715         /* get energy, force and virial of every atom */
1716
1717         /* first (and only) loop over atoms i */
1718         for(i=0;i<count;i++) {
1719
1720                 /* single particle potential/force */
1721                 if(itom[i].attr&ATOM_ATTR_1BP)
1722                         if(moldyn->func1b)
1723                                 moldyn->func1b(moldyn,&(itom[i]));
1724
1725                 if(!(itom[i].attr&(ATOM_ATTR_2BP|ATOM_ATTR_3BP)))
1726                         continue;
1727
1728                 /* 2 body pair potential/force */
1729         
1730                 link_cell_neighbour_index(moldyn,
1731                                           (itom[i].r.x+moldyn->dim.x/2)/lc->x,
1732                                           (itom[i].r.y+moldyn->dim.y/2)/lc->y,
1733                                           (itom[i].r.z+moldyn->dim.z/2)/lc->z,
1734                                           neighbour_i);
1735
1736                 dnlc=lc->dnlc;
1737
1738                 /* first loop over atoms j */
1739                 if(moldyn->func2b) {
1740                         for(j=0;j<27;j++) {
1741
1742                                 this=&(neighbour_i[j]);
1743                                 list_reset_f(this);
1744
1745                                 if(this->start==NULL)
1746                                         continue;
1747
1748                                 bc_ij=(j<dnlc)?0:1;
1749
1750                                 do {
1751                                         jtom=this->current->data;
1752
1753                                         if(jtom==&(itom[i]))
1754                                                 continue;
1755
1756                                         if((jtom->attr&ATOM_ATTR_2BP)&
1757                                            (itom[i].attr&ATOM_ATTR_2BP)) {
1758                                                 moldyn->func2b(moldyn,
1759                                                                &(itom[i]),
1760                                                                jtom,
1761                                                                bc_ij);
1762                                         }
1763                                 } while(list_next_f(this)!=L_NO_NEXT_ELEMENT);
1764
1765                         }
1766                 }
1767
1768                 /* 3 body potential/force */
1769
1770                 if(!(itom[i].attr&ATOM_ATTR_3BP))
1771                         continue;
1772
1773                 /* copy the neighbour lists */
1774                 memcpy(neighbour_i2,neighbour_i,27*sizeof(t_list));
1775
1776                 /* second loop over atoms j */
1777                 for(j=0;j<27;j++) {
1778
1779                         this=&(neighbour_i[j]);
1780                         list_reset_f(this);
1781
1782                         if(this->start==NULL)
1783                                 continue;
1784
1785                         bc_ij=(j<dnlc)?0:1;
1786
1787                         do {
1788                                 jtom=this->current->data;
1789
1790                                 if(jtom==&(itom[i]))
1791                                         continue;
1792
1793                                 if(!(jtom->attr&ATOM_ATTR_3BP))
1794                                         continue;
1795
1796                                 /* reset 3bp run */
1797                                 moldyn->run3bp=1;
1798
1799                                 if(moldyn->func3b_j1)
1800                                         moldyn->func3b_j1(moldyn,
1801                                                           &(itom[i]),
1802                                                           jtom,
1803                                                           bc_ij);
1804
1805                                 /* in first j loop, 3bp run can be skipped */
1806                                 if(!(moldyn->run3bp))
1807                                         continue;
1808                         
1809                                 /* first loop over atoms k */
1810                                 if(moldyn->func3b_k1) {
1811
1812                                 for(k=0;k<27;k++) {
1813
1814                                         that=&(neighbour_i2[k]);
1815                                         list_reset_f(that);
1816                                         
1817                                         if(that->start==NULL)
1818                                                 continue;
1819
1820                                         bc_ik=(k<dnlc)?0:1;
1821
1822                                         do {
1823
1824                                                 ktom=that->current->data;
1825
1826                                                 if(!(ktom->attr&ATOM_ATTR_3BP))
1827                                                         continue;
1828
1829                                                 if(ktom==jtom)
1830                                                         continue;
1831
1832                                                 if(ktom==&(itom[i]))
1833                                                         continue;
1834
1835                                                 moldyn->func3b_k1(moldyn,
1836                                                                   &(itom[i]),
1837                                                                   jtom,
1838                                                                   ktom,
1839                                                                   bc_ik|bc_ij);
1840
1841                                         } while(list_next_f(that)!=\
1842                                                 L_NO_NEXT_ELEMENT);
1843
1844                                 }
1845
1846                                 }
1847
1848                                 if(moldyn->func3b_j2)
1849                                         moldyn->func3b_j2(moldyn,
1850                                                           &(itom[i]),
1851                                                           jtom,
1852                                                           bc_ij);
1853
1854                                 /* second loop over atoms k */
1855                                 if(moldyn->func3b_k2) {
1856
1857                                 for(k=0;k<27;k++) {
1858
1859                                         that=&(neighbour_i2[k]);
1860                                         list_reset_f(that);
1861                                         
1862                                         if(that->start==NULL)
1863                                                 continue;
1864
1865                                         bc_ik=(k<dnlc)?0:1;
1866
1867                                         do {
1868
1869                                                 ktom=that->current->data;
1870
1871                                                 if(!(ktom->attr&ATOM_ATTR_3BP))
1872                                                         continue;
1873
1874                                                 if(ktom==jtom)
1875                                                         continue;
1876
1877                                                 if(ktom==&(itom[i]))
1878                                                         continue;
1879
1880                                                 moldyn->func3b_k2(moldyn,
1881                                                                   &(itom[i]),
1882                                                                   jtom,
1883                                                                   ktom,
1884                                                                   bc_ik|bc_ij);
1885
1886                                         } while(list_next_f(that)!=\
1887                                                 L_NO_NEXT_ELEMENT);
1888
1889                                 }
1890                                 
1891                                 }
1892
1893                                 /* 2bp post function */
1894                                 if(moldyn->func3b_j3) {
1895                                         moldyn->func3b_j3(moldyn,
1896                                                           &(itom[i]),
1897                                                           jtom,bc_ij);
1898                                 }
1899                                         
1900                         } while(list_next_f(this)!=L_NO_NEXT_ELEMENT);
1901                 
1902                 }
1903                 
1904 #ifdef DEBUG
1905         //printf("\n\n");
1906 #endif
1907 #ifdef VDEBUG
1908         printf("\n\n");
1909 #endif
1910
1911         }
1912
1913 #ifdef DEBUG
1914         //printf("\nATOM 0: %f %f %f\n\n",itom->f.x,itom->f.y,itom->f.z);
1915         if(moldyn->time>DSTART&&moldyn->time<DEND) {
1916                 printf("force:\n");
1917                 printf("  x: %0.40f\n",moldyn->atom[5832].f.x);
1918                 printf("  y: %0.40f\n",moldyn->atom[5832].f.y);
1919                 printf("  z: %0.40f\n",moldyn->atom[5832].f.z);
1920         }
1921 #endif
1922
1923         /* calculate global virial */
1924         for(i=0;i<count;i++) {
1925                 moldyn->gvir.xx+=moldyn->atom[i].r.x*moldyn->atom[i].f.x;
1926                 moldyn->gvir.yy+=moldyn->atom[i].r.y*moldyn->atom[i].f.y;
1927                 moldyn->gvir.zz+=moldyn->atom[i].r.z*moldyn->atom[i].f.z;
1928                 moldyn->gvir.xy+=moldyn->atom[i].r.y*moldyn->atom[i].f.x;
1929                 moldyn->gvir.xz+=moldyn->atom[i].r.z*moldyn->atom[i].f.x;
1930                 moldyn->gvir.yz+=moldyn->atom[i].r.z*moldyn->atom[i].f.y;
1931         }
1932
1933         return 0;
1934 }
1935
1936 /*
1937  * virial calculation
1938  */
1939
1940 //inline int virial_calc(t_atom *a,t_3dvec *f,t_3dvec *d) {
1941 int virial_calc(t_atom *a,t_3dvec *f,t_3dvec *d) {
1942
1943         a->virial.xx+=f->x*d->x;
1944         a->virial.yy+=f->y*d->y;
1945         a->virial.zz+=f->z*d->z;
1946         a->virial.xy+=f->x*d->y;
1947         a->virial.xz+=f->x*d->z;
1948         a->virial.yz+=f->y*d->z;
1949
1950         return 0;
1951 }
1952
1953 /*
1954  * periodic boundary checking
1955  */
1956
1957 //inline int check_per_bound(t_moldyn *moldyn,t_3dvec *a) {
1958 int check_per_bound(t_moldyn *moldyn,t_3dvec *a) {
1959         
1960         double x,y,z;
1961         t_3dvec *dim;
1962
1963         dim=&(moldyn->dim);
1964
1965         x=dim->x/2;
1966         y=dim->y/2;
1967         z=dim->z/2;
1968
1969         if(moldyn->status&MOLDYN_STAT_PBX) {
1970                 if(a->x>=x) a->x-=dim->x;
1971                 else if(-a->x>x) a->x+=dim->x;
1972         }
1973         if(moldyn->status&MOLDYN_STAT_PBY) {
1974                 if(a->y>=y) a->y-=dim->y;
1975                 else if(-a->y>y) a->y+=dim->y;
1976         }
1977         if(moldyn->status&MOLDYN_STAT_PBZ) {
1978                 if(a->z>=z) a->z-=dim->z;
1979                 else if(-a->z>z) a->z+=dim->z;
1980         }
1981
1982         return 0;
1983 }
1984         
1985 /*
1986  * debugging / critical check functions
1987  */
1988
1989 int moldyn_bc_check(t_moldyn *moldyn) {
1990
1991         t_atom *atom;
1992         t_3dvec *dim;
1993         int i;
1994         double x;
1995         u8 byte;
1996         int j,k;
1997
1998         atom=moldyn->atom;
1999         dim=&(moldyn->dim);
2000         x=dim->x/2;
2001
2002         for(i=0;i<moldyn->count;i++) {
2003                 if(atom[i].r.x>=dim->x/2||-atom[i].r.x>dim->x/2) {
2004                         printf("FATAL: atom %d: x: %.20f (%.20f)\n",
2005                                i,atom[i].r.x,dim->x/2);
2006                         printf("diagnostic:\n");
2007                         printf("-----------\natom.r.x:\n");
2008                         for(j=0;j<8;j++) {
2009                                 memcpy(&byte,(u8 *)(&(atom[i].r.x))+j,1);
2010                                 for(k=0;k<8;k++)
2011                                         printf("%d%c",
2012                                         ((byte)&(1<<k))?1:0,
2013                                         (k==7)?'\n':'|');
2014                         }
2015                         printf("---------------\nx=dim.x/2:\n");
2016                         for(j=0;j<8;j++) {
2017                                 memcpy(&byte,(u8 *)(&x)+j,1);
2018                                 for(k=0;k<8;k++)
2019                                         printf("%d%c",
2020                                         ((byte)&(1<<k))?1:0,
2021                                         (k==7)?'\n':'|');
2022                         }
2023                         if(atom[i].r.x==x) printf("the same!\n");
2024                         else printf("different!\n");
2025                 }
2026                 if(atom[i].r.y>=dim->y/2||-atom[i].r.y>dim->y/2)
2027                         printf("FATAL: atom %d: y: %.20f (%.20f)\n",
2028                                i,atom[i].r.y,dim->y/2);
2029                 if(atom[i].r.z>=dim->z/2||-atom[i].r.z>dim->z/2)
2030                         printf("FATAL: atom %d: z: %.20f (%.20f)\n",
2031                                i,atom[i].r.z,dim->z/2);
2032         }
2033
2034         return 0;
2035 }
2036
2037 /*
2038  * restore function
2039  */
2040
2041 int moldyn_read_save_file(t_moldyn *moldyn,char *file) {
2042
2043         int fd;
2044         int cnt,size;
2045
2046         fd=open(file,O_RDONLY);
2047         if(fd<0) {
2048                 perror("[moldyn] load save file open");
2049                 return fd;
2050         }
2051
2052         size=sizeof(t_moldyn);
2053         cnt=read(fd,moldyn,size);
2054         if(cnt!=size) {
2055                 perror("[moldyn] load save file read (moldyn)");
2056                 return cnt;
2057         }
2058
2059         size=moldyn->count*sizeof(t_atom);
2060         cnt=read(fd,moldyn->atom,size);
2061         if(cnt!=size) {
2062                 perror("[moldyn] load save file read (atoms)");
2063                 return cnt;
2064         }
2065
2066         // hooks
2067
2068         return 0;
2069 }
2070
2071 int moldyn_load(t_moldyn *moldyn) {
2072
2073         // later ...
2074
2075         return 0;
2076 }
2077
2078 /*
2079  * post processing functions
2080  */
2081
2082 int get_line(int fd,char *line,int max) {
2083
2084         int count,ret;
2085
2086         count=0;
2087
2088         while(1) {
2089                 if(count==max) return count;
2090                 ret=read(fd,line+count,1);
2091                 if(ret<=0) return ret;
2092                 if(line[count]=='\n') {
2093                         line[count]='\0';
2094                         return count+1;
2095                 }
2096                 count+=1;
2097         }
2098 }
2099
2100 int pair_correlation_init(t_moldyn *moldyn,double dr) {
2101
2102         
2103         return 0;
2104 }
2105
2106 int calculate_pair_correlation(t_moldyn *moldyn,double dr) {
2107
2108         int slots;
2109         int *stat;
2110         int i;
2111         t_linkcell *lc;
2112         t_list neighbour[27];
2113         t_atom *itom,*jtom;
2114         t_list *this;
2115
2116         lc=&(moldyn->lc);
2117
2118         slots=(int)(moldyn->cutoff/dr);
2119
2120         stat=(int *)malloc(3*slots*sizeof(int));
2121         if(stat==NULL) {
2122                 perror("[moldyn] pair correlation malloc");
2123                 return -1;
2124         }
2125
2126         link_cell_init(moldyn,VERBOSE);
2127         
2128         for(i=0;i<lc->cells;i++) {
2129                 /* check for atoms */
2130                 itom=lc->subcell[i].current->data;
2131                 if(itom==NULL)
2132                         continue;
2133
2134                 /* pick first atom and do neighbour indexing */
2135                 link_cell_neighbour_index(moldyn,
2136                                           (itom->r.x+moldyn->dim.x/2)/lc->x,
2137                                           (itom->r.y+moldyn->dim.y/2)/lc->x,
2138                                           (itom->r.z+moldyn->dim.z/2)/lc->x,
2139                                           neighbour);
2140
2141                 /* calculation of g(r) */
2142                 do {
2143                         itom=lc->subcell[i].current->data;
2144 // GO ON HERE ...
2145                 } while(list_next_f(this)!=L_NO_NEXT_ELEMENT););
2146
2147         }
2148
2149         link_cell_shutdown(moldyn);
2150
2151         return 0;
2152 }
2153
2154 int analyze_bonds(t_moldyn *moldyn) {
2155
2156         
2157         
2158
2159         return 0;
2160 }
2161
2162 /*
2163  * visualization code
2164  */
2165
2166 int visual_init(t_moldyn *moldyn,char *filebase) {
2167
2168         strncpy(moldyn->vis.fb,filebase,128);
2169
2170         return 0;
2171 }
2172
2173 int visual_atoms(t_moldyn *moldyn) {
2174
2175         int i,j,fd;
2176         char file[128+64];
2177         t_3dvec dim;
2178         double help;
2179         t_visual *v;
2180         t_atom *atom;
2181         t_atom *btom;
2182         t_linkcell *lc;
2183         t_list neighbour[27];
2184         u8 bc;
2185         t_3dvec dist;
2186         double d2;
2187         u8 brand;
2188
2189         v=&(moldyn->vis);
2190         dim.x=v->dim.x;
2191         dim.y=v->dim.y;
2192         dim.z=v->dim.z;
2193         atom=moldyn->atom;
2194         lc=&(moldyn->lc);
2195
2196         help=(dim.x+dim.y);
2197
2198         sprintf(file,"%s/atomic_conf_%07.f.xyz",v->fb,moldyn->time);
2199         fd=open(file,O_WRONLY|O_CREAT|O_TRUNC,S_IRUSR|S_IWUSR);
2200         if(fd<0) {
2201                 perror("open visual save file fd");
2202                 return -1;
2203         }
2204
2205         /* write the actual data file */
2206
2207         // povray header
2208         dprintf(fd,"# [P] %d %07.f <%f,%f,%f>\n",
2209                 moldyn->count,moldyn->time,help/40.0,help/40.0,-0.8*help);
2210
2211         // atomic configuration
2212         for(i=0;i<moldyn->count;i++) {
2213                 // atom type, positions, color and kinetic energy
2214                 dprintf(fd,"%s %f %f %f %s %f\n",pse_name[atom[i].element],
2215                                                  atom[i].r.x,
2216                                                  atom[i].r.y,
2217                                                  atom[i].r.z,
2218                                                  pse_col[atom[i].element],
2219                                                  atom[i].ekin);
2220
2221                 /*
2222                  * bond detection should usually be done by potential
2223                  * functions. brrrrr! EVIL!
2224                  * 
2225                  * todo: potentials need to export a 'find_bonds' function!
2226                  */
2227
2228                 // bonds between atoms
2229                 if(!(atom[i].attr&ATOM_ATTR_VB))
2230                         continue;
2231                 link_cell_neighbour_index(moldyn,
2232                                           (atom[i].r.x+moldyn->dim.x/2)/lc->x,
2233                                           (atom[i].r.y+moldyn->dim.y/2)/lc->y,
2234                                           (atom[i].r.z+moldyn->dim.z/2)/lc->z,
2235                                           neighbour);
2236                 for(j=0;j<27;j++) {
2237                         list_reset_f(&neighbour[j]);
2238                         if(neighbour[j].start==NULL)
2239                                 continue;
2240                         bc=j<lc->dnlc?0:1;
2241                         do {
2242                                 btom=neighbour[j].current->data;
2243                                 if(btom==&atom[i])      // skip identical atoms
2244                                         continue;
2245                                 //if(btom<&atom[i])     // skip half of them
2246                                 //      continue;
2247                                 v3_sub(&dist,&(atom[i].r),&(btom->r));
2248                                 if(bc) check_per_bound(moldyn,&dist);
2249                                 d2=v3_absolute_square(&dist);
2250                                 brand=atom[i].brand;
2251                                 if(brand==btom->brand) {
2252                                         if(d2>moldyn->bondlen[brand])
2253                                                 continue;
2254                                 }
2255                                 else {
2256                                         if(d2>moldyn->bondlen[2])
2257                                                 continue;
2258                                 }
2259                                 dprintf(fd,"# [B] %f %f %f %f %f %f\n",
2260                                         atom[i].r.x,atom[i].r.y,atom[i].r.z,
2261                                         btom->r.x,btom->r.y,btom->r.z);
2262                         } while(list_next_f(&neighbour[j])!=L_NO_NEXT_ELEMENT);
2263                 }
2264         }
2265
2266         // boundaries
2267         if(dim.x) {
2268                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2269                         -dim.x/2,-dim.y/2,-dim.z/2,
2270                         dim.x/2,-dim.y/2,-dim.z/2);
2271                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2272                         -dim.x/2,-dim.y/2,-dim.z/2,
2273                         -dim.x/2,dim.y/2,-dim.z/2);
2274                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2275                         dim.x/2,dim.y/2,-dim.z/2,
2276                         dim.x/2,-dim.y/2,-dim.z/2);
2277                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2278                         -dim.x/2,dim.y/2,-dim.z/2,
2279                         dim.x/2,dim.y/2,-dim.z/2);
2280
2281                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2282                         -dim.x/2,-dim.y/2,dim.z/2,
2283                         dim.x/2,-dim.y/2,dim.z/2);
2284                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2285                         -dim.x/2,-dim.y/2,dim.z/2,
2286                         -dim.x/2,dim.y/2,dim.z/2);
2287                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2288                         dim.x/2,dim.y/2,dim.z/2,
2289                         dim.x/2,-dim.y/2,dim.z/2);
2290                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2291                         -dim.x/2,dim.y/2,dim.z/2,
2292                         dim.x/2,dim.y/2,dim.z/2);
2293
2294                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2295                         -dim.x/2,-dim.y/2,dim.z/2,
2296                         -dim.x/2,-dim.y/2,-dim.z/2);
2297                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2298                         -dim.x/2,dim.y/2,dim.z/2,
2299                         -dim.x/2,dim.y/2,-dim.z/2);
2300                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2301                         dim.x/2,-dim.y/2,dim.z/2,
2302                         dim.x/2,-dim.y/2,-dim.z/2);
2303                 dprintf(fd,"# [D] %f %f %f %f %f %f\n",
2304                         dim.x/2,dim.y/2,dim.z/2,
2305                         dim.x/2,dim.y/2,-dim.z/2);
2306         }
2307
2308         close(fd);
2309
2310         return 0;
2311 }
2312