]> hackdaworld.org Git - lectures/latex.git/blob - posic/publications/defect_combos.tex
vor bw-geloebnis
[lectures/latex.git] / posic / publications / defect_combos.tex
1 \documentclass[prb,twocolumn,superscriptaddress,a4paper,showkeys,showpacs]{revtex4}\r
2 \usepackage{graphicx}\r
3 \usepackage{subfigure}\r
4 \usepackage{dcolumn}\r
5 \usepackage{booktabs}\r
6 \usepackage{units}\r
7 \usepackage{amsmath}\r
8 \usepackage{amsfonts}\r
9 \usepackage{amssymb}\r
10 \r
11 % additional stuff\r
12 \usepackage{miller}\r
13 \r
14 % roman numbers\r
15 \newcommand{\RM}[1]{\MakeUppercase{\romannumeral #1{}}}\r
16 \r
17 \begin{document}\r
18 \r
19 %\title{Mobility of Carbon in Silicon -- a first-principles study}\r
20 \title{First-principles study of defects in carbon implanted silicon}\r
21 \author{F. Zirkelbach}\r
22 \author{B. Stritzker}\r
23 \affiliation{Experimentalphysik IV, Universit\"at Augsburg, 86135 Augsburg, Germany}\r
24 \author{J. K. N. Lindner}\r
25 \author{W. G. Schmidt}\r
26 \author{E. Rauls}\r
27 \affiliation{Department Physik, Universit\"at Paderborn, 33095 Paderborn, Germany}\r
28 \r
29 \begin{abstract}\r
30 A first-principles investigation of the mobility of carbon and silicon interstitials in silicon is presented.\r
31 We investigated the migration mechanism of a carbon \hkl<1 0 0> interstitial and silicon \hkl<1 1 0> self-interstitial in otherwise defect-free silicon using density functional theory calculations.\r
32 The influence of a nearby vacancy, another carbon interstitial and a substitutional defect as well as a silicon self-interstitial has been investigated systematically.\r
33 Interactions of various combinations of defects have been characterized including a couple of selected migration pathways within these configurations.\r
34 Almost all of the investigated pairs of defects tend to agglomerate allowing for a reduction in strain.\r
35 The formation of structures involving strong carbon-carbon bonds turns out to be very unlikely.\r
36 %In contrast, substitutional carbon occurs in all probability.\r
37 In contrast, substitutional carbon occurs.\r
38 A long range capture radius has been observed for pairs of interstitial carbon as well as interstitial carbon and vacancies.\r
39 A rather small capture radius is predicted for substitutional carbon and silicon self-interstitials.\r
40 We derive conclusions on the precipitation mechanism of silicon carbide in bulk silicon and discuss conformability to experimental findings.\r
41 \end{abstract}\r
42 \r
43 \keywords{point defects, defect clusters, migration, interstitials, ion implantation, first-principles calculations}\r
44 \pacs{61.72.J-,61.72.Yx,61.72.uj,66.30.J-,79.20.Rf,31.15.A-}\r
45 \maketitle\r
46 \r
47 %  --------------------------------------------------------------------------------\r
48 \section{Introduction}\r
49 \r
50 % Frank:  Intro: hier kuerzer als in dem anderen Paper, dieselben (und mehr) Zitate bzgl. der Defekte (s. letzte Mail). SiC-precipitation würde ich schon erwähnen, aber nicht so detailliert.\r
51 \r
52 Silicon carbide (SiC) is a promising material for high-temperature, high-power and high-frequency electronic and optoelectronic devices employable under extreme conditions\cite{edgar92,morkoc94,wesch96,capano97,park98}.\r
53 Ion beam synthesis (IBS) consisting of high-dose carbon implantation into crystalline silicon (c-Si) and subsequent or in situ annealing is a promising technique to fabricate nano-sized precipitates and thin films of cubic SiC (3C-SiC) topotactically aligned to and embedded in the silicon host\cite{borders71,lindner99,lindner01,lindner02}.\r
54 However, the process of the formation of SiC precipitates in Si during C implantation is not yet fully understood.\r
55 Based on experimental high resolution transmission electron microscopy (HREM) studies\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03} it is assumed that incorporated C atoms form C-Si dimers (dumbbells) on regular Si lattice sites.\r
56 The highly mobile C interstitials agglomerate into large clusters followed by the formation of incoherent 3C-SiC nanocrystallites once a critical size of the cluster is reached.\r
57 In contrast, investigations of SiC precipitation in studies on strained Si$_{1-y}$C$_y$/Si heterostructures formed by molecular beam epitaxy (MBE)\cite{strane94,guedj98} suggest an initial coherent precipitation by agglomeration of substitutional instead of interstitial C followed by the loss of coherency once the increasing strain energy surpasses the interfacial energy of the incoherent 3C-SiC precipitate and the c-Si substrate.\r
58 These two different mechanisms of precipitation might be attributed to the respective method of fabrication, i.e. whether precipitation occurs inside the Si bulk or on the Si surface.\r
59 However, in another IBS study Nejim et al. propose a topotactic transformation remaining structure and orientation that is likewise based on the formation of substitutional C and a concurrent reaction of the excess Si self-interstitials with further implanted C atoms\cite{nejim95}.\r
60 Solving this controversy and understanding the effective underlying processes will enable significant technological progress in 3C-SiC thin film formation driving the superior polytype for potential applications in high-performance electronic device production\cite{wesch96}.\r
61 \r
62 Atomistic simulations offer a powerful tool of investigation on a microscopic level providing detailed insight not accessible by experiment.\r
63 A lot of theoretical work has been done on intrinsic point defects in Si\cite{bar-yam84,bar-yam84_2,car84,batra87,bloechl93,tang97,leung99,colombo02,goedecker02,al-mushadani03,hobler05,sahli05,posselt08,ma10}, threshold displacement energies in Si\cite{mazzarolo01,holmstroem08} important in ion implantation, C defects and defect reactions in Si\cite{tersoff90,dal_pino93,capaz94,burnard93,leary97,capaz98,zhu98,mattoni2002,park02,jones04}, the SiC/Si interface\cite{chirita97,kitabatake93,cicero02,pizzagalli03} and defects in SiC\cite{bockstedte03,rauls03a,gao04,posselt06,gao07}.\r
64 However, none of the mentioned studies consistently investigates entirely the relevant defect structures and reactions concentrated on the specific problem of 3C-SiC formation in C implanted Si.\r
65 % but mattoni2002 actually did a lot. maybe this should be mentioned!\r
66 In fact, in a combined analytical potential molecular dynamics and ab initio study\cite{mattoni2002} the interaction of substitutional C with Si self-interstitials and C interstitials is evaluated.\r
67 However, investigations are, first of all, restricted to interaction chains along the \hkl[1 1 0] and \hkl[-1 1 0] direction, secondly lacking combinations of C interstitials and, finally, not considering migration barriers providing further information on the probability of defect agglomeration.\r
68 \r
69 By first-principles atomistic simulations this work aims to shed light on basic processes involved in the precipitation mechanism of SiC in Si.\r
70 During implantation defects such as vacancies (V), substitutional C (C$_{\text{s}}$), interstitial C (C$_{\text{i}}$) and Si self-interstitials (Si$_{\text{i}}$) are created, which play a decisive role in the precipitation process.\r
71 In the following a systematic investigation of density functional theory (DFT) calculations of the structure, energetics and mobility of carbon defects in silicon as well as the influence of other point defects in the surrounding is presented.\r
72 % TODO: maybe delete: decisive role half sentence\r
73 \r
74 %  --------------------------------------------------------------------------------\r
75 \section{Methodology}\r
76 \r
77 The first-principles DFT calculations were performed with the plane-wave based Vienna ab initio simulation package (VASP)\cite{kresse96}.\r
78 The Kohn-Sham equations were solved using the generalized-gradient exchange-correlation (XC) functional approximation proposed by Perdew and Wang\cite{perdew86,perdew92}.\r
79 The electron-ion interaction was described by norm-conserving ultra-soft pseudopotentials\cite{hamann79} as implemented in VASP\cite{vanderbilt90}.\r
80 Throughout this work an energy cut-off of \unit[300]{eV} was used to expand the wave functions into the plane-wave basis.\r
81 Sampling of the Brillouin zone was restricted to the $\Gamma$-point.\r
82 The defect structures and the migration paths were modelled in cubic supercells with a side length of \unit[1.6]{nm} containing $216$ Si atoms.\r
83 The ions and cell shape were allowed to change in order to realize a constant pressure simulation.\r
84 Ionic relaxation was realized by the conjugate gradient algorithm.\r
85 Spin polarization has been fully accounted for.\r
86 \r
87 Migration and recombination pathways have been investigated utilizing the constraint conjugate gradient relaxation technique (CRT)\cite{kaukonen98}.\r
88 The defect formation energy $E-N_{\text{Si}}\mu_{\text{Si}}-N_{\text{C}}\mu_{\text{C}}$ is defined by choosing SiC as a particle reservoir for the C impurity, i.e. the chemical potentials are determined by the cohesive energies of a perfect Si and SiC supercell after ionic relaxation.\r
89 The binding energy of a defect pair is given by the difference of the formation energy of the complex and the sum of the two separated defect configurations.\r
90 Accordingly, energetically favorable configurations show binding energies below zero while non-interacting isolated defects result in a binding energy of zero.\r
91 \r
92 \section{Results}\r
93 \r
94 The implantation of highly energetic C atoms results in a multiplicity of possible defect configurations.\r
95 Next to individual Si$_{\text{i}}$, C$_{\text{i}}$, V and C$_{\text{s}}$ defects, combinations of these defects and their interaction are considered important for the problem under study.\r
96 First of all, structure and energetics of separated defects are presented.\r
97 The investigations proceed with pairs of the ground state and, thus, most probable defect configurations that are believed to be fundamental in the Si to SiC conversion.\r
98 \r
99 \subsection{Separated defects in silicon}\r
100 \label{subsection:sep_def}\r
101 % we need both: Si self-int & C int ground state configuration (for combos)\r
102 \r
103 Several geometries have been calculated to be stable for individual intrinsic and C related defects in Si.\r
104 Fig.~\ref{fig:sep_def} shows the obtained structures while the corresponding energies of formation are summarized and compared to values from literature in Table~\ref{table:sep_eof}.\r
105 \begin{figure}\r
106 \begin{minipage}[t]{0.32\columnwidth}\r
107 \underline{Si$_{\text{i}}$ \hkl<1 1 0> DB}\\\r
108 \includegraphics[width=\columnwidth]{si110.eps}\r
109 \end{minipage}\r
110 \begin{minipage}[t]{0.32\columnwidth}\r
111 \underline{Si$_{\text{i}}$ hexagonal}\\\r
112 \includegraphics[width=\columnwidth]{sihex.eps}\r
113 \end{minipage}\r
114 \begin{minipage}[t]{0.32\columnwidth}\r
115 \underline{Si$_{\text{i}}$ tetrahedral}\\\r
116 \includegraphics[width=\columnwidth]{sitet.eps}\r
117 \end{minipage}\\\r
118 \begin{minipage}[t]{0.32\columnwidth}\r
119 \underline{Si$_{\text{i}}$ \hkl<1 0 0> DB}\\\r
120 \includegraphics[width=\columnwidth]{si100.eps}\r
121 \end{minipage}\r
122 \begin{minipage}[t]{0.32\columnwidth}\r
123 \underline{Vacancy}\\\r
124 \includegraphics[width=\columnwidth]{sivac.eps}\r
125 \end{minipage}\r
126 \begin{minipage}[t]{0.32\columnwidth}\r
127 \underline{C$_{\text{s}}$}\\\r
128 \includegraphics[width=\columnwidth]{csub.eps}\r
129 \end{minipage}\\\r
130 \begin{minipage}[t]{0.32\columnwidth}\r
131 \underline{C$_{\text{i}}$ \hkl<1 0 0> DB}\\\r
132 \includegraphics[width=\columnwidth]{c100.eps}\r
133 \end{minipage}\r
134 \begin{minipage}[t]{0.32\columnwidth}\r
135 \underline{C$_{\text{i}}$ \hkl<1 1 0> DB}\\\r
136 \includegraphics[width=\columnwidth]{c110.eps}\r
137 \end{minipage}\r
138 \begin{minipage}[t]{0.32\columnwidth}\r
139 \underline{C$_{\text{i}}$ bond-centered}\\\r
140 \includegraphics[width=\columnwidth]{cbc.eps}\r
141 \end{minipage}\r
142 \caption{Configurations of silicon and carbon point defects in silicon. Silicon and carbon atoms are illustrated by yellow and gray spheres respectively. Bonds are drawn whenever considered appropriate to ease identifying defect structures for the reader. Dumbbell configurations are abbreviated by DB.}\r
143 \label{fig:sep_def}\r
144 \end{figure}\r
145 \begin{table*}\r
146 \begin{ruledtabular}\r
147 \begin{tabular}{l c c c c c c c c c}\r
148  & Si$_{\text{i}}$ \hkl<1 1 0> DB & Si$_{\text{i}}$ H & Si$_{\text{i}}$ T & Si$_{\text{i}}$ \hkl<1 0 0> DB & V & C$_{\text{s}}$ & C$_{\text{i}}$ \hkl<1 0 0> DB & C$_{\text{i}}$ \hkl<1 1 0> DB & C$_{\text{i}}$ BC \\\r
149 \hline\r
150  Present study & 3.39 & 3.42 & 3.77 & 4.41 & 3.63 & 1.95 & 3.72 & 4.16 & 4.66 \\\r
151  \multicolumn{10}{c}{Other ab initio studies} \\\r
152  Ref.\cite{al-mushadani03} & 3.40 & 3.45 & - & - & 3.53 & - & - & - & - \\\r
153  Ref.\cite{leung99} & 3.31 & 3.31 & 3.43 & - & - & - & - & - & - \\\r
154  Ref.\cite{dal_pino93,capaz94} & - & - & - & - & - & 1.89\cite{dal_pino93} & x & - & x+2.1\cite{capaz94}\r
155 \end{tabular}\r
156 \end{ruledtabular}\r
157 \caption{Formation energies of silicon and carbon point defects in crystalline silicon given in eV. T denotes the tetrahedral, H the hexagonal and BC the bond-centered interstitial configuration. V corresponds to the vacancy configuration. Dumbbell configurations are abbreviated by DB.}\r
158 \label{table:sep_eof}\r
159 \end{table*}\r
160 Results obtained by the present study compare well with results from literature\cite{leung99,al-mushadani03,dal_pino93,capaz94}.\r
161 Regarding intrinsic defects in Si, the \hkl<1 1 0> self-interstitial dumbbell (Si$_{\text{i}}$ \hkl<1 1 0> DB) is found to be the ground state configuration closely followed by the hexagonal and tetrahedral configuration, which is consensus for Si$_{\text{i}}$\cite{leung99,al-mushadani03}.\r
162 In the case of a C impurity, next to the C$_{\text{s}}$ configuration, in which a C atom occupies an already vacant Si lattice site, the C \hkl<1 0 0> interstitial dumbbell (C$_{\text{i}}$ \hkl<1 0 0> DB) constitutes the energetically most favorable configuration, in which the C and Si dumbbell atoms share a regular Si lattice site.\r
163 This finding is in agreement with several theoretical\cite{burnard93,leary97,dal_pino93,capaz94,jones04} and experimental\cite{watkins76,song90} investigations, which all predict this configuration to be the ground state.\r
164 %However, to our best knowledge, no energy of formation for this type of defect based on first-principles calculations has yet been explicitly stated in literature.\r
165 However, to our best knowledge, no energy of formation for this type of defect based on first-principles calculations is available.\r
166 \r
167 Instead, Capaz et al.\cite{capaz94}, investigating migration pathways of the C$_{\text{i}}$ \hkl<1 0 0> DB, find this defect to be \unit[2.1]{eV} lower in energy than the bond-centered (BC) configuration.\r
168 The BC configuration is claimed to constitute the saddle point within the C$_{\text{i}}$ \hkl[0 0 -1] DB migration path residing in the \hkl(1 1 0) plane and, thus, interpreted as the barrier of migration for the respective path.\r
169 However, the present study indicates a local minimum state for the BC defect if spin polarized calculations are performed resulting in a net magnetization of two electrons localized in a torus around the C atom.\r
170 Another DFT calculation without fully accounting for the electron spin results in the smearing of a single electron over two non-degenerate Kohn-Sham states and an increase of the total energy by \unit[0.3]{eV} for the BC configuration.\r
171 Regardless of the rather small correction of \unit[0.3]{eV} due to the spin, the difference we found is much smaller (\unit[0.94]{eV}), which would nicely compare to experimentally observed migration barriers of \unit[0.70-0.87]{eV}\cite{lindner06,tipping87,song90}.\r
172 However, since the BC configuration constitutes a real local minimum another barrier exists which is about \unit[1.2]{eV} in height.\r
173 Indeed Capaz et al. propose another path and find it to be the lowest in energy\cite{capaz94}, in which a C$_{\text{i}}$ \hkl[0 0 -1] DB migrates to a C$_{\text{i}}$ \hkl[0 -1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction.\r
174 Calculations in this work reinforce this path by an additional improvement of the quantitative conformance of the barrier height (\unit[0.90]{eV}) to experimental values.\r
175 A more detailed description can be found in a previous study\cite{zirkelbach10a}.\r
176 \r
177 Next to the C$_{\text{i}}$ BC configuration the vacancy and Si$_{\text{i}}$ \hkl<1 0 0> DB have to be treated by taking into account the spin of the electrons.\r
178 For the vacancy the net spin up electron density is localized in caps at the four surrounding Si atoms directed towards the vacant site.\r
179 In the  Si$_{\text{i}}$ \hkl<1 0 0> DB configuration the net spin up density is localized in two caps at each of the two DB atoms perpendicularly aligned to the bonds to the other two Si atoms respectively.\r
180 No other configuration, within the ones that are mentioned, is affected.\r
181 \r
182 Concerning the mobility of the ground state Si$_{\text{i}}$, we found an activation energy of \unit[0.67]{eV} for the transition of the Si$_{\text{i}}$ \hkl[0 1 -1] to \hkl[1 1 0] DB located at the neighbored Si lattice site in \hkl[1 1 -1] direction.\r
183 Further investigations revealed a barrier of \unit[0.94]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ H, \unit[0.53]{eV} for the Si$_{\text{i}}$ \hkl[1 1 0] DB to Si$_{\text{i}}$ T and \unit[0.35]{eV} for the Si$_{\text{i}}$ H to Si$_{\text{i}}$ T transition.\r
184 %Obtained values are of the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.\r
185 These are of the same order of magnitude than values derived from other ab initio studies\cite{bloechl93,sahli05}.\r
186 \r
187 \subsection{Pairs of C$_{\text{i}}$}\r
188 \r
189 C$_{\text{i}}$ pairs of the \hkl<1 0 0> type have been investigated in the first part.\r
190 Fig.~\ref{fig:combos_ci} schematically displays the initial C$_{\text{i}}$ \hkl[0 0 -1] DB structure and various positions for the second defect (1-5) that have been used for investigating defect pairs.\r
191 Table~\ref{table:dc_c-c} summarizes resulting binding energies for the combination with a second C-Si \hkl<1 0 0> DB obtained for different orientations at positions 1 to 5.\r
192 \begin{figure}\r
193 \subfigure[]{\label{fig:combos_ci}\includegraphics[width=0.45\columnwidth]{combos_ci.eps}}\r
194 \hspace{0.1cm}\r
195 \subfigure[]{\label{fig:combos_si}\includegraphics[width=0.45\columnwidth]{combos.eps}}\r
196 \caption{Position of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB (I) (Fig.~\ref{fig:combos_ci}) and of the lattice site chosen for the initial Si$_{\text{i}}$ \hkl<1 1 0> DB (Si$_{\text{i}}$) (Fig.~\ref{fig:combos_si}). Lattice sites for the second defect used for investigating defect pairs are numbered from 1 to 5.} \r
197 \label{fig:combos}\r
198 \end{figure}\r
199 \begin{table}\r
200 \begin{ruledtabular}\r
201 \begin{tabular}{l c c c c c c }\r
202  & 1 & 2 & 3 & 4 & 5 & R \\\r
203 \hline\r
204  \hkl[0 0 -1] & -0.08 & -1.15 & -0.08 & 0.04 & -1.66 & -0.19\\\r
205  \hkl[0 0 1] & 0.34 & 0.004 & -2.05 & 0.26 & -1.53 & -0.19\\\r
206  \hkl[0 -1 0] & -2.39 & -0.17 & -0.10 & -0.27 & -1.88 & -0.05\\\r
207  \hkl[0 1 0] & -2.25 & -1.90 & -2.25 & -0.12 & -1.38 & -0.06\\\r
208  \hkl[-1 0 0] & -2.39 & -0.36 & -2.25 & -0.12 & -1.88 & -0.05\\\r
209  \hkl[1 0 0] & -2.25 & -2.16 & -0.10 & -0.27 & -1.38 & -0.06\\\r
210 \end{tabular}\r
211 \end{ruledtabular}\r
212 \caption{Binding energies in eV of C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs. Equivalent configurations exhibit equal energies. Column 1 lists the orientation of the second defect, which is combined with the initial C$_{\text{i}}$ \hkl[0 0 -1] DB. The position index of the second defect is given in the first row according to Fig.~\ref{fig:combos}. R corresponds to the position located at $\frac{a_{\text{Si}}}{2}\hkl[3 2 3]$ relative to the initial defect position, which is the maximum realizable defect separation distance ($\approx \unit[1.3]{nm}$) due to periodic boundary conditions.}\r
213 \label{table:dc_c-c}\r
214 \end{table}\r
215 Most of the obtained configurations result in binding energies well below zero indicating a preferable agglomeration of this type of defects.\r
216 For increasing distances of the defect pair the binding energy approaches to zero (R in Table~\ref{table:dc_c-c}) as it is expected for non-interacting isolated defects.\r
217 Energetically favorable and unfavorable configurations can be explained by stress compensation and increase respectively based on the resulting net strain of the respective configuration of the defect combination.\r
218 Antiparallel orientations of the second defect, i.e. \hkl[0 0 1] for positions located below the \hkl(0 0 1) plane with respect to the initial one (positions 1, 2 and 4) form the energetically most unfavorable configurations.\r
219 In contrast, the parallel and particularly the twisted orientations constitute energetically favorable configurations, in which a vast reduction of strain is enabled by combination of these defects.\r
220 \r
221 Mattoni et al.\cite{mattoni2002} predict the ground state configuration for a \hkl[1 0 0] or equivalently a \hkl[0 1 0] defect created at position 1 with both defects basically maintaining the as-isolated DB structure, resulting in a binding energy of \unit[-2.1]{eV}.\r
222 In this work we observed a further relaxation of this defect structure.\r
223 The C atom of the second and the Si atom of the initial DB move towards each other forming a bond, which results in a somewhat lower binding energy of \unit[-2.25]{eV}.\r
224 Apart from that, we found a more favorable configuration for the combination with a \hkl[0 -1 0] and \hkl[-1 0 0] DB respectively, which is assumed to constitute the actual ground state configuration of two C$_{\text{i}}$ DBs in Si.\r
225 The atomic arrangement is shown in the bottom right of Fig.~\ref{fig:036-239}.\r
226 The two C$_{\text{i}}$ atoms form a strong C-C bond, which is responsible for the large gain in energy resulting in a binding energy of \unit[-2.39]{eV}.\r
227 \r
228 Investigating migration barriers allows to predict the probability of formation of defect complexes by thermally activated diffusion processes.\r
229 % ground state configuration, C cluster\r
230 Based on the lowest energy migration path of a single C$_{\text{i}}$ DB the configuration, in which the second C$_{\text{i}}$ DB is oriented along \hkl[0 1 0] at position 2 is assumed to constitute an ideal starting point for a transition into the ground state.\r
231 In addition, the starting configuration exhibits a low binding energy (\unit[-1.90]{eV}) and is, thus, very likely to occur.\r
232 However, a barrier height of more than \unit[4]{eV} was detected resulting in a low probability for the transition.\r
233 The high activation energy is attributed to the stability of such a low energy configuration, in which the C atom of the second DB is located close to the initial DB.\r
234 Low barriers have only been identified for transitions starting from energetically less favorable configurations, e.g. the configuration of a \hkl[-1 0 0] DB located at position 2 (\unit[-0.36]{eV}).\r
235 Starting from this configuration, an activation energy of only \unit[1.2]{eV} is necessary for the transition into the ground state configuration.\r
236 The corresponding migration energies and atomic configurations are displayed in Fig.~\ref{fig:036-239}.\r
237 \begin{figure}\r
238 \includegraphics[width=\columnwidth]{036-239.ps}\r
239 \caption{Migration barrier and structures of the transition of a C$_{\text{i}}$ \hkl[-1 0 0] DB at position 2 (left) into a C$_{\text{i}}$ \hkl[0 -1 0] DB at position 1 (right). An activation energy of \unit[1.2]{eV} is observed.}\r
240 \label{fig:036-239}\r
241 \end{figure}\r
242 %  strange mig from -190 -> -2.39 (barrier > 4 eV)\r
243 % C-C migration -> idea:\r
244 %  mig from low energy confs has extremely high barrier!\r
245 %  low barrier only from energetically less/unfavorable confs (?)! <- prove!\r
246 %  => low probability of C-C clustering ?!?\r
247 %\r
248 % should possibly be transfered to discussion section\r
249 Since thermally activated C clustering is, thus, only possible by traversing energetically unfavored configurations, extensive C clustering is not expected.\r
250 Furthermore, the migration barrier of \unit[1.2]{eV} is still higher than the activation energy of \unit[0.9]{eV} observed for a single C$_{\text{i}}$ \hkl<1 0 0> DB in c-Si.\r
251 The migration barrier of a C$_{\text{i}}$ DB in a complex system is assumed to approximate the barrier of a DB in a separated system with increasing defect separation.\r
252 Accordingly, lower migration barriers are expected for pathways resulting in larger separations of the C$_{\text{i}}$ DBs.\r
253 % acknowledged by 188-225 (reverse order) calc\r
254 However, if the increase of separation is accompanied by an increase in binding energy, this difference is needed in addition to the activation energy for the respective migration process.\r
255 Configurations, which exhibit both, a low binding energy as well as afferent transitions with low activation energies are, thus, most probable C$_{\text{i}}$ complex structures.\r
256 On the other hand, if elevated temperatures enable migrations with huge activation energies, comparably small differences in configurational energy can be neglected resulting in an almost equal occupation of such configurations.\r
257 In both cases the configuration yielding a binding energy of \unit[-2.25]{eV} is promising.\r
258 First of all, it constitutes the second most energetically favorable structure.\r
259 Secondly, a migration path with a barrier as low as \unit[0.47]{eV} exists starting from a configuration of largely separated defects exhibiting a low binding energy (\unit[-1.88]{eV}).\r
260 The migration barrier and corresponding structures are shown in Fig.~\ref{fig:188-225}.\r
261 \begin{figure}\r
262 \includegraphics[width=\columnwidth]{188-225.ps}\r
263 \caption{Migration barrier and structures of the transition of a C$_{\text{i}}$ \hkl[0 -1 0] DB at position 5 (left) into a C$_{\text{i}}$ \hkl[1 0 0] DB at position 1 (right). An activation energy of \unit[0.47]{eV} is observed.}\r
264 \label{fig:188-225}\r
265 \end{figure}\r
266 Finally, this type of defect pair is represented four times (two times more often than the ground state configuration) within the systematically investigated configuration space.\r
267 The latter is considered very important at high temperatures, accompanied by an increase in the entropic contribution to structure formation.\r
268 As a result, C defect agglomeration indeed is expected, but only a low probability is assumed for C-C clustering by thermally activated processes with regard to the considered process time in IBS.\r
269 % alternatively: ... considered period of time (of the IBS process).\r
270 %\r
271 % ?!?\r
272 % look for precapture mechanism (local minimum in energy curve)\r
273 % also: plot energy all confs with respect to C-C distance\r
274 %       maybe a pathway exists traversing low energy confs ?!?\r
275 \r
276 % point out that configurations along 110 were extended up to the 6th NN in that direction\r
277 The binding energies of the energetically most favorable configurations with the second DB located along the \hkl[1 1 0] direction and resulting C-C distances of the relaxed structures are summarized in Table~\ref{table:dc_110}.\r
278 \begin{table}\r
279 \begin{ruledtabular}\r
280 \begin{tabular}{l c c c c c c }\r
281  & 1 & 2 & 3 & 4 & 5 & 6 \\\r
282 \hline\r
283  $E_{\text{b}}$ [eV] & -2.39 & -1.88 & -0.59 & -0.31 & -0.24 & -0.21 \\\r
284 C-C distance [nm] & 0.14 & 0.46 & 0.65 & 0.86 & 1.05 & 1.08 \r
285 \end{tabular}\r
286 \end{ruledtabular}\r
287 \caption{Binding energies $E_{\text{b}}$ and C-C distance of energetically most favorable C$_{\text{i}}$ \hkl<1 0 0>-type defect pairs separated along the \hkl[1 1 0] bond chain.}\r
288 \label{table:dc_110}\r
289 \end{table}\r
290 The binding energy of these configurations with respect to the C-C distance is plotted in Fig.~\ref{fig:dc_110}.\r
291 \begin{figure}\r
292 \includegraphics[width=\columnwidth]{db_along_110_cc_n.ps}\r
293 \caption{Minimum binding energy of dumbbell combinations separated along \hkl[1 1 0] with respect to the C-C distance. The blue line is a guide for the eye and the green curve corresponds to the most suitable fit function consisting of all but the first data point.}\r
294 \label{fig:dc_110}\r
295 \end{figure}\r
296 The interaction is found to be proportional to the reciprocal cube of the C-C distance for extended separations of the C$_{\text{i}}$ and saturates for the smallest possible separation, i.e. the ground state configuration.\r
297 Not considering the previously mentioned elevated barriers for migration an attractive interaction between the C$_{\text{i}}$ defects indeed is detected with a capture radius that clearly exceeds \unit[1]{nm}.\r
298 The interpolated graph suggests the disappearance of attractive interaction forces, which are proportional to the slope of the graph, in between the two lowest separation distances of the defects.\r
299 This finding, in turn, supports the previously established assumption of C agglomeration and absence of C clustering.\r
300 \r
301 \begin{table}\r
302 \begin{ruledtabular}\r
303 \begin{tabular}{l c c c c c c }\r
304  & 1 & 2 & 3 & 4 & 5 & R \\\r
305 \hline\r
306 C$_{\text{s}}$ & 0.26$^a$/-1.28$^b$ & -0.51 & -0.93$^A$/-0.95$^B$ & -0.15 & 0.49 & -0.05\\\r
307 V & -5.39 ($\rightarrow$ C$_{\text{S}}$) & -0.59 & -3.14 & -0.54 & -0.50 & -0.31\r
308 \end{tabular}\r
309 \end{ruledtabular}\r
310 \caption{Binding energies of combinations of the C$_{\text{i}}$ \hkl[0 0 -1] defect with a substitutional C or vacancy located at positions 1 to 5 according to Fig.~\ref{fig:combos_ci}. R corresponds to the position located at $\frac{a_{\text{Si}}}{2}\hkl[3 2 3]$ relative to the initial defect position, which is the maximum realizable distance due to periodic boundary conditions.}\r
311 \label{table:dc_c-sv}\r
312 \end{table}\r
313 \r
314 \subsection{C$_{\text{i}}$ next to C$_{\text{s}}$}\r
315 \r
316 The first row of Table~\ref{table:dc_c-sv} lists the binding energies of C$_{\text{s}}$ next to the C$_{\text{i}}$ \hkl[0 0 -1] DB.\r
317 For C$_{\text{s}}$ located at position 1 and 3 the configurations a and A correspond to the naive relaxation of the structure by substituting the Si atom by a C atom in the initial C$_{\text{i}}$ \hkl[0 0 -1] DB structure at positions 1 and 3 respectively.\r
318 However, small displacements of the involved atoms near the defect result in different stable structures labeled b and B respectively.\r
319 Fig.~\ref{fig:093-095} and \ref{fig:026-128} show structures A, B and a, b together with the barrier of migration for the A to B and a to b transition respectively. \r
320 \r
321 % A B\r
322 %./visualize_contcar -w 640 -h 480 -d results/c_00-1_c3_csub_B -nll -0.20 -0.4 -0.1 -fur 0.9 0.6 0.9 -c 0.5 -1.5 0.375 -L 0.5 0 0.3 -r 0.6 -A -1 2.465\r
323 \begin{figure}\r
324 \includegraphics[width=\columnwidth]{093-095.ps}\r
325 \caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and C$_{\text{s}}$ at position 3 (left) into a configuration of a twofold coordinated Si$_{\text{i}}$ located in between two C$_{\text{s}}$ atoms occupying the lattice sites of the initial DB and position 3 (right). An activation energy of \unit[0.44]{eV} is observed.}\r
326 \label{fig:093-095}\r
327 \end{figure}\r
328 Configuration A consists of a C$_{\text{i}}$ \hkl[0 0 -1] DB with threefold coordinated Si and C DB atoms slightly disturbed by the C$_{\text{s}}$ at position 3, facing the Si DB atom as a neighbor.\r
329 By a single bond switch, i.e. the breaking of a Si-Si in favor of a Si-C bond, configuration B is obtained, which shows a twofold coordinated Si atom located in between two substitutional C atoms residing on regular Si lattice sites.\r
330 This configuration has been identified and described by spectroscopic experimental techniques\cite{song90_2} as well as theoretical studies\cite{leary97,capaz98}.\r
331 Configuration B is found to constitute the energetically slightly more favorable configuration.\r
332 However, the gain in energy due to the significantly lower energy of a Si-C compared to a Si-Si bond turns out to be smaller than expected due to a large compensation by introduced strain as a result of the Si interstitial structure.\r
333 Present results show a difference in energy of states A and B, which exactly matches the experimental value of \unit[0.02]{eV}\cite{song90_2} reinforcing qualitatively correct results of previous theoretical studies on these structures.\r
334 % mattoni: A favored by 0.4 eV - NO, it is indeed B (reinforce Song and Capaz)!\r
335 %\r
336 % AB transition\r
337 The migration barrier was identified to be \unit[0.44]{eV}, almost three times higher than the experimental value of \unit[0.16]{eV}\cite{song90_2} estimated for the neutral charge state transition in p- and n-type Si.\r
338 Keeping in mind the formidable agreement of the energy difference with experiment, the overestimated activation energy is quite unexpected.\r
339 Obviously, either the CRT algorithm fails to seize the actual saddle point structure or the influence of dopants has exceptional effect in the experimentally covered diffusion process being responsible for the low migration barrier.\r
340 % not satisfactory!\r
341 \r
342 % a b\r
343 \begin{figure}\r
344 \includegraphics[width=\columnwidth]{026-128.ps}\r
345 \caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and C$_{\text{s}}$ at position 1 (left) into a C-C \hkl[1 0 0] DB occupying the lattice site at position 1 (right). An activation energy of \unit[0.1]{eV} is observed.}\r
346 \label{fig:026-128}\r
347 \end{figure}\r
348 Configuration a is similar to configuration A, except that the C$_{\text{s}}$ atom at position 1 is facing the C DB atom as a neighbor resulting in the formation of a strong C-C bond and a much more noticeable perturbation of the DB structure.\r
349 Nevertheless, the C and Si DB atoms remain threefold coordinated.\r
350 Although the C-C bond exhibiting a distance of \unit[0.15]{nm} close to the distance expected in diamond or graphite should lead to a huge gain in energy, a repulsive interaction with a binding energy of \unit[0.26]{eV} is observed due to compressive strain of the Si DB atom and its top neighbors (\unit[0.230]{nm}/\unit[0.236]{nm}) along with additional tensile strain of the C$_{\text{s}}$ and its three neighboring Si atoms (\unit[0.198-0.209]{nm}/\unit[0.189]{nm}).\r
351 Again a single bond switch, i.e. the breaking of the bond of the Si atom bound to the fourfold coordinated C$_{\text{s}}$ atom and the formation of a double bond between the two C atoms, results in configuration b.\r
352 The two C atoms form a \hkl[1 0 0] DB sharing the initial C$_{\text{s}}$ lattice site while the initial Si DB atom occupies its previously regular lattice site.\r
353 The transition is accompanied by a large gain in energy as can be seen in Fig.~\ref{fig:026-128}, making it the ground state configuration of a C$_{\text{s}}$ and C$_{\text{i}}$ DB in Si yet \unit[0.33]{eV} lower in energy than configuration B.\r
354 This finding is in good agreement with a combined ab initio and experimental study of Liu et~al.\cite{liu02}, who first proposed this structure as the ground state identifying an energy difference compared to configuration B of \unit[0.2]{eV}.\r
355 % mattoni: A favored by 0.2 eV - NO! (again, missing spin polarization?)\r
356 A net magnetization of two spin up electrons, which are equally localized as in the Si$_{\text{i}}$ \hkl<1 0 0> DB structure is observed.\r
357 In fact, these two configurations are very similar and are qualitatively different from the C$_{\text{i}}$ \hkl<1 0 0> DB that does not show magnetization but a nearly collinear bond of the C DB atom to its two neighbored Si atoms while the Si DB atom approximates \unit[120]{$^{\circ}$} angles in between its bonds.\r
358 Configurations a, A and B are not affected by spin polarization and show zero magnetization.\r
359 Mattoni et~al.\cite{mattoni2002}, in contrast, find configuration b less favorable than configuration A by \unit[0.2]{eV}.\r
360 Next to differences in the XC functional and plane-wave energy cut-off this discrepancy might be attributed to the neglect of spin polarization in their calculations, which -- as has been shown for the C$_{\text{i}}$ BC configuration -- results in an increase of configurational energy.\r
361 Indeed, investigating the migration path from configurations a to b and, in doing so, reusing the wave functions of the previous migration step the final structure, i.e. configuration b, was obtained with zero magnetization and an increase in configurational energy by \unit[0.2]{eV}.\r
362 Obviously a different energy minimum of the electronic system is obtained indicating hysteresis behavior.\r
363 However, since the total energy is lower for the magnetic result it is believed to constitute the real, i.e. global, minimum with respect to electronic minimization.\r
364 %\r
365 % a b transition\r
366 A low activation energy of \unit[0.1]{eV} is observed for the a$\rightarrow$b transition.\r
367 Thus, configuration a is very unlikely to occur in favor of configuration b.\r
368 \r
369 % repulsive along 110\r
370 A repulsive interaction is observed for C$_{\text{s}}$ at lattice sites along \hkl[1 1 0], i.e. positions 1 (configuration a) and 5.\r
371 This is due to tensile strain originating from both, the C$_{\text{i}}$ DB and the C$_{\text{s}}$ atom residing within the \hkl[1 1 0] bond chain.\r
372 This finding agrees well with results by Mattoni et~al.\cite{mattoni2002}.\r
373 % all other investigated results: attractive interaction. stress compensation.\r
374 In contrast, all other investigated configurations show attractive interactions.\r
375 The most favorable configuration is found for C$_{\text{s}}$ at position 3, which corresponds to the lattice site of one of the upper neighbored Si atoms of the DB structure that is compressively strained along \hkl[1 -1 0] and \hkl[0 0 1] by the C-Si DB.\r
376 The substitution with C allows for most effective compensation of strain.\r
377 This structure is followed by C$_{\text{s}}$ located at position 2, the lattice site of one of the neighbor atoms below the two Si atoms that are bound to the C$_{\text{i}}$ DB atom.\r
378 As mentioned earlier these two lower Si atoms indeed experience tensile strain along the \hkl[1 1 0] bond chain, however, additional compressive strain along \hkl[0 0 1] exists.\r
379 The latter is partially compensated by the C$_{\text{s}}$ atom.\r
380 Yet less of compensation is realized if C$_{\text{s}}$ is located at position 4 due to a larger separation although both bottom Si atoms of the DB structure are indirectly affected, i.e. each of them is connected by another Si atom to the C atom enabling the reduction of strain along \hkl[0 0 1].\r
381 \r
382 % c agglomeration vs c clustering ... migs to b conf\r
383 % 2 more migs: 051 -> 128 and 026! forgot why ... probably it's about probability of C clustering\r
384 Obviously agglomeration of C$_{\text{i}}$ and C$_{\text{s}}$ is energetically favorable except for separations along one of the \hkl<1 1 0> directions.\r
385 The energetically most favorable configuration (configuration b) forms a strong but compressively strained C-C bond with a separation distance of \unit[0.142]{nm} sharing a Si lattice site.\r
386 Again, conclusions concerning the probability of formation are drawn by investigating migration paths.\r
387 Since C$_{\text{s}}$ is unlikely to exhibit a low activation energy for migration the focus is on C$_{\text{i}}$.\r
388 Pathways starting from the two next most favored configurations were investigated, which show activation energies above \unit[2.2]{eV} and \unit[3.5]{eV} respectively.\r
389 Although lower than the barriers for obtaining the ground state of two C$_{\text{i}}$ defects the activation energies are yet considered too high.\r
390 For the same reasons as in the last subsection, structures other than the ground state configuration are, thus, assumed to arise more likely due to much lower activation energies necessary for their formation and still comparatively low binding energies.\r
391 \r
392 \subsection{C$_{\text{i}}$ next to V}\r
393 \r
394 In the last subsection configurations of a C$_{\text{i}}$ DB with C$_{\text{s}}$ occupying a vacant site have been investigated.\r
395 Additionally, configurations might arise in IBS, in which the impinging C atom creates a vacant site near a C$_{\text{i}}$ DB, but does not occupy it.\r
396 Resulting binding energies of a C$_{\text{i}}$ DB and a nearby vacancy are listed in the second row of Table~\ref{table:dc_c-sv}.\r
397 All investigated structures are preferred compared to isolated largely separated defects.\r
398 In contrast to C$_{\text{s}}$ this is also valid for positions along \hkl[1 1 0] resulting in an entirely attractive interaction between defects of these types.\r
399 Even for the largest possible distance (R) achieved in the calculations of the periodic supercell a binding energy as low as \unit[-0.31]{eV} is observed.\r
400 The ground state configuration is obtained for a V at position 1.\r
401 The C atom of the DB moves towards the vacant site forming a stable C$_{\text{s}}$ configuration resulting in the release of a huge amount of energy.\r
402 The second most favorable configuration is accomplished for a V located at position 3 due to the reduction of compressive strain of the Si DB atom and its two upper Si neighbors present in the C$_{\text{i}}$ DB configuration.\r
403 This configuration is followed by the structure, in which a vacant site is created at position 2.\r
404 Similar to the observations for C$_{\text{s}}$ in the last subsection a reduction of strain along \hkl[0 0 1] is enabled by this configuration.\r
405 Relaxed structures of the latter two defect combinations are shown in the bottom left of Fig.~\ref{fig:314-539} and \ref{fig:059-539} respectively together with their energetics during transition into the ground state.\r
406 \begin{figure}\r
407 \includegraphics[width=\columnwidth]{314-539.ps}\r
408 \caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and a V created at position 3 (left) into a C$_{\text{s}}$ configuration (right). An activation energy of \unit[0.1]{eV} is observed.}\r
409 \label{fig:314-539}\r
410 \end{figure}\r
411 \begin{figure}\r
412 \includegraphics[width=\columnwidth]{059-539.ps}\r
413 \caption{Migration barrier and structures of the transition of the initial C$_{\text{i}}$ \hkl[0 0 -1] DB and a V created at position 2 (left) into a C$_{\text{s}}$ configuration (right). An activation energy of \unit[0.6]{eV} is observed.}\r
414 \label{fig:059-539}\r
415 \end{figure}\r
416 Activation energies as low as \unit[0.1]{eV} and \unit[0.6]{eV} are observed.\r
417 In the first case the Si and C atom of the DB move towards the vacant and initial DB lattice site respectively.\r
418 In total three Si-Si and one more Si-C bond is formed during transition.\r
419 In the second case the lowest barrier is found for the migration of Si number 1, which is substituted by the C$_{\text{i}}$ atom, towards the vacant site.\r
420 A net amount of five Si-Si and one Si-C bond are additionally formed during transition.\r
421 The direct migration of the C$_{\text{i}}$ atom onto the vacant lattice site results in a somewhat higher barrier of \unit[1.0]{eV}.\r
422 In both cases, the formation of additional bonds is responsible for the vast gain in energy rendering almost impossible the reverse processes.\r
423 \r
424 In summary, pairs of C$_{\text{i}}$ DBs and Vs, like no other before, show highly attractive interactions for all investigated combinations independent of orientation and separation direction of the defects.\r
425 Furthermore, small activation energies, even for transitions into the ground state exist.\r
426 Based on these results, a high probability for the formation of C$_{\text{s}}$ must be concluded.\r
427 \r
428 \subsection{C$_{\text{s}}$ next to Si$_{\text{i}}$}\r
429 \r
430 As shown in section~\ref{subsection:sep_def}, C$_{\text{s}}$ exhibits the lowest energy of formation.\r
431 Considering a perfect Si crystal and conservation of particles, however, the occupation of a Si lattice site by a slowed down implanted C atom is necessarily accompanied by the formation of a Si self-interstitial.\r
432 There are good reasons for the existence of regions exhibiting such configurations with regard to the IBS process.\r
433 Highly energetic C atoms are able to kick out a Si atom from its lattice site, resulting in a Si self-interstitial accompanied by a vacant site, which might get occupied by another C atom that lost almost all of its kinetic energy.\r
434 %Thus, configurations of C$_{\text{s}}$ and Si self-interstitials are investigated in the following.\r
435 Provided that the first C atom, which created the V and Si$_{\text{i}}$ pair has enough kinetic energy to escape the affected region, the C$_{\text{s}}$-Si$_{\text{i}}$ pair can be described as a separated defect complex.\r
436 The Si$_{\text{i}}$ \hkl<1 1 0> DB, which was found to exhibit the lowest energy of formation within the investigated self-interstitial configurations, is assumed to provide the energetically most favorable configuration in combination with C$_{\text{s}}$.\r
437 \r
438 \begin{table}\r
439 \begin{ruledtabular}\r
440 \begin{tabular}{l c c c c c c}\r
441  & \hkl[1 1 0] & \hkl[-1 1 0] & \hkl[0 1 1] & \hkl[0 -1 1] &\r
442    \hkl[1 0 1] & \hkl[-1 0 1] \\\r
443 \hline\r
444 1 & \RM{1} & \RM{3} & \RM{3} & \RM{1} & \RM{3} & \RM{1} \\\r
445 2 & \RM{2} & \RM{6} & \RM{6} & \RM{2} & \RM{8} & \RM{5} \\\r
446 3 & \RM{3} & \RM{1} & \RM{3} & \RM{1} & \RM{1} & \RM{3} \\\r
447 4 & \RM{4} & \RM{7} & \RM{9} & \RM{10} & \RM{10} & \RM{9} \\\r
448 5 & \RM{5} & \RM{8} & \RM{6} & \RM{2} & \RM{6} & \RM{2} \\\r
449 \end{tabular}\r
450 \caption{Equivalent configurations labeled \RM{1}-\RM{10} of \hkl<1 1 0>-type Si$_{\text{i}}$ DBs created at position I and C$_{\text{s}}$ created at positions 1 to 5 according to Fig.~\ref{fig:combos_si}. The respective orientation of the Si$_{\text{i}}$ DB is given in the first row.}\r
451 \label{table:dc_si-s}\r
452 \end{ruledtabular}\r
453 \end{table}\r
454 \begin{table*}\r
455 \begin{ruledtabular}\r
456 \begin{tabular}{l c c c c c c c c c c}\r
457  & \RM{1} & \RM{2} & \RM{3} & \RM{4} & \RM{5} & \RM{6} & \RM{7} & \RM{8} & \RM{9} & \RM{10} \\\r
458 \hline\r
459 $E_{\text{f}}$ [eV]& 4.37 & 5.26 & 5.57 & 5.37 & 5.12 & 5.10 & 5.32 & 5.28 & 5.39 & 5.32 \\\r
460 $E_{\text{b}}$ [eV] & -0.97 & -0.08 & 0.22 & -0.02 & -0.23 & -0.25 & -0.02 & -0.06 & 0.05 & -0.03 \\\r
461 $r$ [nm] & 0.292 & 0.394 & 0.241 & 0.453 & 0.407 & 0.408 & 0.452 & 0.392 & 0.456 & 0.453\\\r
462 \end{tabular}\r
463 \caption{Formation energies $E_{\text{f}}$, binding energies $E_{\text{b}}$ and C$_{\text{s}}$-Si$_{\text{i}}$ separation distances of configurations combining C$_{\text{s}}$ and Si$_{\text{i}}$ as defined in Table~\ref{table:dc_si-s}.}\r
464 \label{table:dc_si-s_e}\r
465 \end{ruledtabular}\r
466 \end{table*}\r
467 Table~\ref{table:dc_si-s} classifies equivalent configurations of \hkl<1 1 0>-type Si$_{\text{i}}$ DBs created at position I and C$_{\text{s}}$ created at positions 1 to 5 according to Fig.~\ref{fig:combos_si}.\r
468 Corresponding formation as well as binding energies and the separation distances of the C$_{\text{s}}$ atom and the Si$_{\text{i}}$ DB lattice site are listed in Table~\ref{table:dc_si-s_e}.\r
469 In total ten different configurations exist within the investigated range.\r
470 Configuration \RM{1} constitutes the energetically most favorable structure exhibiting a formation energy of \unit[4.37]{eV}.\r
471 Obviously the configuration of a Si$_{\text{i}}$ \hkl[1 1 0] DB and a neighbored C$_{\text{s}}$ atom along the bond chain, which has the same direction as the alignment of the DB, enables the largest possible reduction of strain.\r
472 The relaxed structure is displayed in the bottom right of Fig.~\ref{fig:162-097}.\r
473 Compressive strain originating from the Si$_{\text{i}}$ is compensated by tensile strain inherent to the C$_{\text{s}}$ configuration.\r
474 The Si$_{\text{i}}$ DB atoms are displaced towards the lattice site occupied by the C$_{\text{s}}$ atom in such a way that the Si$_{\text{i}}$ DB atom closest to the C atom does no longer form bonds to its top Si neighbors, but to the next neighbored Si atom along \hkl[1 1 0].\r
475 \r
476 However, the configuration is energetically less favorable than the \hkl<1 0 0> C$_{\text{i}}$ DB, which, thus, remains the ground state of a C atom introduced into otherwise perfect c-Si.\r
477 The transition involving the latter two configurations is shown in Fig.~\ref{fig:162-097}.\r
478 \begin{figure}\r
479 \includegraphics[width=\columnwidth]{162-097.ps}\r
480 \caption{Migration barrier and structures of the transition of a \hkl[1 1 0] Si$_{\text{i}}$ DB next to C$_{\text{s}}$ (right) into the C$_{\text{i}}$ \hkl[0 0 -1] DB configuration (left). An activation energy of \unit[0.12]{eV} and \unit[0.77]{eV} for the reverse process is observed.}\r
481 \label{fig:162-097}\r
482 \end{figure}\r
483 An activation energy as low as \unit[0.12]{eV} is necessary for the migration into the ground state configuration.\r
484 Accordingly, the C$_{\text{i}}$ \hkl<1 0 0> DB configuration is assumed to occur more likely.\r
485 However, only \unit[0.77]{eV} are needed for the reverse process, i.e. the formation of C$_{\text{s}}$ and a Si$_{\text{i}}$ DB out of the ground state.\r
486 Due to the low activation energy this process must be considered to be activated without much effort either thermally or by introduced energy of the implantation process.\r
487 \r
488 \begin{figure}\r
489 \includegraphics[width=\columnwidth]{c_sub_si110.ps}\r
490 \caption{Binding energies of combinations of a C$_{\text{s}}$ and a Si$_{\text{i}}$ DB with respect to the separation distance. The binding energies of the defect pairs are well approximated by a Lennard-Jones 6-12 potential, which is used for curve fitting.}\r
491 \label{fig:dc_si-s}\r
492 \end{figure}\r
493 Fig.~\ref{fig:dc_si-s} shows the binding energies of pairs of C$_{\text{s}}$ and a Si$_{\text{i}}$ \hkl<1 1 0> DB with respect to the separation distance.\r
494 The interaction of the defects is well approximated by a Lennard-Jones 6-12 potential, which was used for curve fitting.\r
495 The binding energy quickly drops to zero.\r
496 The Lennard-Jones fit estimates almost zero interaction already at \unit[0.6]{nm}, indicating a low interaction capture radius of the defect pair.\r
497 In IBS highly energetic collisions are assumed to easily produce configurations of defects exhibiting separation distances exceeding the capture radius.\r
498 For this reason C$_{\text{s}}$ without a Si$_{\text{i}}$ DB located within the immediate proximity, which is, thus, unable to form the thermodynamically stable C$_{\text{i}}$ \hkl<1 0 0> DB, constitutes a most likely configuration to be found in IBS.\r
499 \r
500 Similar to what was previously mentioned, configurations of C$_{\text{s}}$ and a Si$_{\text{i}}$ DB might be particularly important at higher temperatures due to the low activation energy necessary for its formation.\r
501 At higher temperatures the contribution of entropy to structural formation increases, which might result in a spatial separation even for defects located within the capture radius.\r
502 Indeed, an ab initio molecular dynamics run at \unit[900]{$^{\circ}$C} starting from configuration \RM{1}, which -- based on the above findings -- is assumed to recombine into the ground state configuration, results in a separation of the C$_{\text{s}}$ and Si$_{\text{i}}$ DB by more than 4 neighbor distances realized in a repeated migration mechanism of annihilating and arising Si$_{\text{i}}$  DBs.\r
503 The atomic configurations for two different points in time are shown in Fig.~\ref{fig:md}.\r
504 Si atoms 1 and 2, which form the initial DB, occupy Si lattice sites in the final configuration while Si atom 3 is transferred from a regular lattice site into the interstitial lattice.\r
505 \begin{figure}\r
506 \begin{minipage}{0.49\columnwidth}\r
507 \includegraphics[width=\columnwidth]{md01.eps}\r
508 \end{minipage}\r
509 \begin{minipage}{0.49\columnwidth}\r
510 \includegraphics[width=\columnwidth]{md02.eps}\\\r
511 \end{minipage}\\\r
512 \begin{minipage}{0.49\columnwidth}\r
513 \begin{center}\r
514 $t=\unit[2230]{fs}$\r
515 \end{center}\r
516 \end{minipage}\r
517 \begin{minipage}{0.49\columnwidth}\r
518 \begin{center}\r
519 $t=\unit[2900]{fs}$\r
520 \end{center}\r
521 \end{minipage}\r
522 \caption{Atomic configurations of an ab initio molecular dynamics run at \unit[900]{$^{\circ}$C} starting from a configuration of C$_{\text{s}}$ located next to a Si$_{\text{i}}$ \hkl[1 1 0] DB (atoms 1 and 2). Equal atoms are marked by equal numbers. Bonds are drawn for substantial atoms only.}\r
523 \label{fig:md}\r
524 \end{figure}\r
525 \r
526 \section{Discussion}\r
527 \r
528 Obtained results for separated point defects in Si are in good agreement to previous theoretical work on this subject, both for intrinsic defects\cite{leung99,al-mushadani03} as well as for C point defects\cite{dal_pino93,capaz94}.\r
529 The ground state configurations of these defects, i.e. the Si$_{\text{i}}$ \hkl<1 1 0> and C$_{\text{i}}$ \hkl<1 0 0> DB, have been reproduced and compare well to previous findings of theoretical investigations on Si$_{\text{i}}$\cite{leung99,al-mushadani03} as well as theoretical\cite{dal_pino93,capaz94,burnard93,leary97,jones04} and experimental\cite{watkins76,song90} studies on C$_{\text{i}}$.\r
530 A quantitatively improved activation energy of \unit[0.9]{eV} for a qualitatively equal migration path based on studies by Capaz et.~al.\cite{capaz94} to experimental values\cite{song90,lindner06,tipping87} ranging from \unit[0.70-0.87]{eV} reinforce their derived mechanism of diffusion for C$_{\text{i}}$ in Si.\r
531 \r
532 The investigation of defect pairs indicated a general trend of defect agglomeration mainly driven by the potential of strain reduction.\r
533 Obtained results for the most part compare well with results gained in previous studies\cite{leary97,capaz98,mattoni2002,liu02} and show an astonishingly good agreement with experiment\cite{song90}.\r
534 For configurations involving two C impurities the ground state configurations have been found to consist of C-C bonds, which are responsible for the vast gain in energy.\r
535 However, based on investigations of possible migration pathways, these structures are less likely to arise than structures, in which both C atoms are interconnected by another Si atom, which is due to high activation energies of the respective pathways or alternative pathways featuring less high activation energies, which, however, involve intermediate unfavorable configurations.\r
536 Thus, agglomeration of C$_{\text{i}}$ is expected while the formation of C-C bonds is assumed to fail to appear by thermally activated diffusion processes.\r
537 \r
538 In contrast, C$_{\text{i}}$ and Vs were found to efficiently react with each other exhibiting activation energies as low as \unit[0.1]{eV} and \unit[0.6]{eV} resulting in stable C$_{\text{s}}$ configurations.\r
539 In addition, we observed a highly attractive interaction exhibiting a large capture radius, effective independent of the orientation and the direction of separation of the defects.\r
540 Accordingly, the formation of C$_{\text{s}}$ is very likely to occur.\r
541 Comparatively high energies necessary for the reverse process reveal this configuration to be extremely stable.\r
542 \r
543 Investigating configurations of C$_{\text{s}}$ and Si$_{\text{i}}$, formation energies higher than that of the C$_{\text{i}}$ \hkl<1 0 0> DB were obtained keeping up previously derived assumptions concerning the ground state of C$_{\text{i}}$ in otherwise perfect Si.\r
544 However, a small capture radius was identified for the respective interaction that might prevent the recombination of defects exceeding a separation of \unit[0.6]{nm} into the ground state configuration.\r
545 In addition, a rather small activation energy of \unit[0.77]{eV} allows for the formation of a C$_{\text{s}}$-Si$_{\text{i}}$ pair originating from the C$_{\text{i}}$ \hkl<1 0 0> DB structure by thermally activated processes.\r
546 Thus, elevated temperatures might lead to configurations of C$_{\text{s}}$ and a remaining Si atom in the near interstitial lattice, which is supported by the result of the molecular dynamics run.\r
547 \r
548 % add somewhere: nearly same energies of C_i -> Si_i + C_s, Si_i mig and C_i mig\r
549 \r
550 These findings allow to draw conclusions on the mechanisms involved in the process of SiC conversion in Si.\r
551 Agglomeration of C$_{\text{i}}$ is energetically favored and enabled by a low activation energy for migration.\r
552 Although ion implantation is a process far from thermodynamic equilibrium, which might result in phases not described by the Si/C phase diagram, i.e. a C phase in Si, high activation energies are believed to be responsible for a low probability of the formation of C-C clusters.\r
553 \r
554 In the context of the initially stated controversy present in the precipitation model, these findings suggest an increased participation of C$_{\text{s}}$ already in the initial stage due to its high probability of incidence.\r
555 In addition, thermally activated, C$_{\text{i}}$ might turn into C$_{\text{s}}$.\r
556 The associated emission of Si$_{\text{i}}$ serves two needs: as a vehicle for other C$_{\text{s}}$ atoms and as a supply of Si atoms needed elsewhere to form the SiC structure.\r
557 As for the vehicle, Si$_{\text{i}}$ is believed to react with C$_{\text{s}}$ turning it into highly mobile C$_{\text{i}}$ again, allowing for the rearrangement of the C atom.\r
558 The rearrangement is crucial to end up in a configuration of C atoms only occupying substitutionally the lattice sites of one of the two fcc lattices that build up the diamond lattice.\r
559 % TODO: add SiC structure info to intro\r
560 On the other hand, the conversion of some region of Si into SiC by substitutional C is accompanied by a reduction of the volume since SiC exhibits a \unit[20]{\%} smaller lattice constant than Si.\r
561 The reduction in volume is compensated by excess Si$_{\text{i}}$ serving as building blocks for the surrounding Si host or a further formation of SiC.\r
562 \r
563 We conclude that precipitation occurs by successive agglomeration of C$_{\text{s}}$.\r
564 However, the agglomeration and rearrangement of C$_{\text{s}}$ is only possible by mobile C$_{\text{i}}$, which has to be present at the same time.\r
565 Accordingly, the process is governed by both, C$_{\text{s}}$ accompanied by Si$_{\text{i}}$ as well as C$_{\text{i}}$.\r
566 It is worth to mention that there is no contradiction to results of the HREM studies\cite{werner96,werner97,eichhorn99,lindner99_2,koegler03}.\r
567 Regions showing dark contrasts in an otherwise undisturbed Si lattice are attributed to C atoms in the interstitial lattice.\r
568 However, there is no particular reason for the C species to reside in the interstitial lattice.\r
569 Contrasts are also assumed for Si$_{\text{i}}$.\r
570 Once precipitation occurs, regions of dark contrasts disappear in favor of Moir\'e patterns indicating 3C-SiC in c-Si due to the mismatch in the lattice constant.\r
571 Until then, however, these regions are either composed of stretched coherent SiC and interstitials or of already contracted incoherent SiC surrounded by Si and interstitials, where the latter is too small to be detected in HREM.\r
572 In both cases Si$_{\text{i}}$ might be attributed a third role, which is the partial compensation of tensile strain that is present either in the stretched SiC or at the interface of the contracted SiC and the Si host.\r
573 \r
574 In addition, the experimentally observed alignment of the \hkl(h k l) planes of the precipitate and the substrate is satisfied by the mechanism of successive positioning of C$_{\text{s}}$.\r
575 In contrast, there is no obvious reason for the topotactic orientation of an agglomerate consisting exclusively of C-Si dimers, which would necessarily involve a much more profound change in structure for the transition into SiC.\r
576 \r
577 \section{Summary}\r
578 \r
579 In summary, C and Si point defects in Si, combinations of these defects and diffusion processes within such configurations have been investigated.\r
580 We have shown that C interstitials in Si tend to agglomerate, which is mainly driven by a reduction of strain.\r
581 Investigations of migration pathways, however, allow to conclude that C clustering is hindered due to high activation energies of the respective diffusion processes.\r
582 A highly attractive interaction and a large capture radius has been identified for the C$_{\text{i}}$ \hkl<1 0 0> DB and the vacancy indicating a high probability for the formation of C$_{\text{s}}$.\r
583 In contrast, a rapidly decreasing interaction with respect to the separation distance has been identified for C$_{\text{s}}$ and a Si$_{\text{i}}$ \hkl<1 1 0> DB resulting in a low probability of defects exhibiting respective separations to transform into the C$_{\text{i}}$ \hkl<1 0 0> DB, which constitutes the ground state configuration for a C atom introduced into otherwise perfect Si. \r
584 %Based on these findings conclusions on basic processes involved in the SiC precipitation in bulk Si are drawn.\r
585 Obviously, the precipitation process is governed by the formation of C$_{\text{s}}$ already in the initial stages.\r
586 Agglomeration and rearrangement of C$_{\text{s}}$, however, is only possible by mobile C$_{\text{i}}$, which, thus, needs to be present at the same time.\r
587 Si$_{\text{i}}$ constitutes the vehicle for the rearrangement of C$_{\text{s}}$.\r
588 \r
589 \r
590 % ----------------------------------------------------\r
591 \section*{Acknowledgment}\r
592 We gratefully acknowledge financial support by the Bayerische Forschungsstiftung (Grant No. DPA-61/05) and the Deutsche Forschungsgemeinschaft (Grant No. DFG SCHM 1361/11).\r
593 Prof. Kai Nordlund is greatly acknowledged for useful comments on the present manuscript.\r
594 \r
595 % --------------------------------- references -------------------\r
596 \r
597 \bibliography{../../bibdb/bibdb}{}\r
598 \bibliographystyle{h-physrev3}\r
599 \r
600 \end{document}\r
601 \r