]> hackdaworld.org Git - lectures/latex.git/commitdiff
(hopefully) final
authorhackbard <hackbard>
Tue, 12 Sep 2006 13:19:04 +0000 (13:19 +0000)
committerhackbard <hackbard>
Tue, 12 Sep 2006 13:19:04 +0000 (13:19 +0000)
nlsop/poster/nlsop_ibmm2006_ver2.tex

index d03cc6a09d40caa85c51a87812622da2f0cf39eb..bc6c1aca73d2b5e6e21e568de412f242c25c4135 100644 (file)
@@ -6,6 +6,8 @@
 
 \begin{document}
 
+\hyphenation{pho-to-lu-mi-nescence}
+
 % Fliessenden Hintergrund von RGB-Farbe 1. .98 .98 nach 1. .85 .85
 % und wieder nach  1. .98 .98 (1. .85 .85 wird nach 0.1=10% des Hinter-
 % grunds angenommen)
@@ -19,7 +21,7 @@
 \renewcommand{\columnfrac}{.31}
 
 % header
-\vspace{-1cm}
+\vspace{-1.5cm}
 \begin{header}
   \begin{minipage} {.13\textwidth}
        \includegraphics[height=11cm]{uni-logo.eps}
@@ -41,7 +43,7 @@
 
 \begin{poster}
 
-\vspace{-1cm}
+\vspace{-1.1cm}
 \begin{pcolumn}
   \begin{pbox}
     \section*{Motivation}
        Experimentally observerd seflorganisation process at high-dose carbon
        implantations under certain implantation conditions.}
        \begin{itemize}
-               \item Spherical and lamellar amorphous inclusions at the upper
-                     a/c interface
+               \item Regularly spaced, nanometric spherical and lamellar
+                      amorphous inclusions at the upper a/c interface
                \begin{center}
                        \includegraphics[width=20cm]{k393abild1_e.eps}
                \end{center}
-               Cross section TEM image:\\
+               Cross-section TEM bright-field image:\\
                $180 \, keV$ $C^+ \rightarrow Si$,
-               $T=150 \, ^{\circ} \mathrm{C}$,
+               $T_i=150 \, ^{\circ} \mathrm{C}$,
                Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
-               black/white: crystalline/amorphous material\\
+               Amorphous inclusions appear white on darker backgrounds\\
                L: amorphous lamellae, S: spherical amorphous inclusions
                \item Carbon accumulation in amorphous volumes
                \begin{center}
                        \includegraphics[width=20cm]{eftem.eps}
                \end{center}
-               Brightfield TEM and respective EFTEM image:\\
+               Bright-field TEM image and respective EFTEM $C$ map:\\
                $180 \, keV$ $C^+ \rightarrow Si$,
-               $T=200 \, ^{\circ} \mathrm{C}$,
+               $T_i=200 \, ^{\circ} \mathrm{C}$,
                Dose: $4.3 \times 10^{17} \, cm^{-2}$\\
                yellow/blue: high/low concentrations of carbon
        \end{itemize}
        {\bf
-       Observed for a number of ion/target combinations for which the
+       Similarly ordered precipitate nanostructures also
+       observed for a number of ion/target combinations for which the
        material undergoes drastic density change upon amorphisation.}\\
        {\scriptsize
        A. H. van Ommen, Nucl. Instr. and Meth. B 39 (1989) 194.\\
        E. D. Specht et al., Nucl. Instr. and Meth. B 84 (1994) 323.\\
        M. Ishimaru et al., Nucl. Instr. and Meth. B 166-167 (2000) 390.}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-1.5cm}
   \begin{pbox}
     \section*{Model}
        {\bf
                \includegraphics[width=20cm]{modell_ng_e.eps}
        \end{center}
        \begin{itemize}
-\item supersaturation of $C$ in $c-Si$\\
-      $\rightarrow$ {\bf carbon induced} nucleation of spherical
+\item Supersaturation of $C$ in $c-Si$\\
+      $\rightarrow$ {\bf Carbon induced} nucleation of spherical
       $SiC_x$-precipitates
-\item high interfacial energy between $3C-SiC$ and $c-Si$\\
-      $\rightarrow$ {\bf amourphous} precipitates
+\item High interfacial energy between $3C-SiC$ and $c-Si$\\
+      $\rightarrow$ {\bf Amourphous} precipitates
 \item $20 - 30\,\%$ lower silicon density of $a-SiC_x$ compared to $c-Si$\\
-      $\rightarrow$ {\bf lateral strain} (black arrows)
-\item implantation range near surface\\
-      $\rightarrow$ {\bf ralaxation} of {\bf vertical strain component}
-\item reduction of the carbon supersaturation in $c-Si$\\
-      $\rightarrow$ {\bf carbon diffusion} into amorphous volumina
+      $\rightarrow$ {\bf Lateral strain} (black arrows)
+\item Implantation range near surface\\
+      $\rightarrow$ {\bf Ralaxation} of {\bf vertical strain component}
+\item Reduction of the carbon supersaturation in $c-Si$\\
+      $\rightarrow$ {\bf Carbon diffusion} into amorphous volumina
       (white arrows)
-\item remaining lateral strain\\
-      $\rightarrow$ {\bf strain induced} lateral amorphisation
+\item Remaining lateral strain\\
+      $\rightarrow$ {\bf Strain enhanced} lateral amorphisation
+\item Absence of crystalline neighbours (structural information)\\
+      $\rightarrow$ {\bf Stabilisation} of amorphous inclusions 
+      {\bf against recrystallisation}
        \end{itemize}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-1.5cm}
   \begin{pbox}
     \section*{Simulation}
        \begin{minipage}[t]{0.5\textwidth}
     \section*{Simulation algorithm}
     {\bf
     The simulation algorithm consists of the following three parts looped 
-    $s$ times corresponding to a dose $D=s/(64\times64\times(3 \, nm)^2)$:}
+    $s$ times corresponding to a dose
+    $D=s/(64\times64\times(3 \, nm)^2)$:}
        \subsection*{1. Amorphisation/Recrystallisation}
        \begin{itemize}
                \item random numbers distributed according to
@@ -196,18 +203,21 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
                \end{itemize}
        \subsection*{3. Diffusion/Sputtering}
                \begin{itemize}
-                       \item every $d_v$ steps transfer $d_r$ of the
-                             carbon atoms of crystalline volumina to
+                       \item every $d_v$ steps transfer of a fraction $d_r$
+                             of carbon atoms from crystalline volumina to
                              an amorphous neighbour volume
-                       \item do the sputter routine after $n$ steps
-                             corresponding to $3 \, nm$ of substrat
-                             removal
+                       \item remove $3 \, nm$ surface layer after $n$ loops,
+                              shift remaining cells $3 \, nm$ up and insert
+                              an empty, crystalline $3 \, nm$ bottom layer
                \end{itemize}
+               \begin{picture}(0,0)(+40,-32)
+                       \includegraphics[height=39.2cm]{loop-arrow.eps}
+               \end{picture}%
                {\bf
                Simulation parameters $d_v$, $d_r$ and $n$ control the
                diffusion and sputtering process.}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-0.27cm}
   \begin{pbox}
        \section*{Comparison of experiment and simulation}
         \begin{center}
@@ -217,11 +227,12 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
                \includegraphics[width=25cm]{dosis_entwicklung_ng_e_2-2.eps}
        \end{center}
        Simulation parameters:\\
-       $p_b=0.01$, $p_c=0.001$, $p_s=0.0001$, $d_r=0.05$, $d_v=1 \times 10^6$.
+       $p_b=0.01$, $p_c=0.001 \times (3 \, nm)^3$,
+        $p_s=0.0001 \times (3 \, nm)^5$, $d_r=0.05$, $d_v=1 \times 10^6$.
        \\[0.7cm]{\bf Conclusion:}
        \begin{itemize}
-               \item Essentially conforming formation and growth of the
-                     continuous amorphous layer
+               \item Simulation in good agreement with experimentally observed
+                     formation and growth of the continuous amorphous layer
                \item Lamellar precipitates and their evolution at the upper
                      a/c interface with increasing dose is reproduced
        \end{itemize}
@@ -243,9 +254,11 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
                              implantation conditions between $8$ and
                              $10 \, at. \%$
                \end{itemize}
-       \end{minipage}
+       \end{minipage}%
        \begin{minipage}[t]{0.43\textwidth}
                \includegraphics[height=15cm]{97_98_ng_e.eps}
+               %\includegraphics[height=13cm]{gitter_e.eps}
+               %\includegraphics[height=15cm=]{test_foo.eps}
                \begin{itemize}
                        \item Complementarily arranged and alternating sequence
                              of layers with high and low amount of amorphous
@@ -254,10 +267,9 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
                \end{itemize}
        \end{minipage}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-1.5cm}
   \begin{pbox}
-       \section*{Recipe:\\
-                 Thick films of ordered lamellar structure}
+       \section*{Recipe for thick films of ordered lamellae}
        \begin{minipage}{0.33\textwidth}
                {\bf Prerequisites:}\\
                Crystalline silicon target with a nearly constant carbon
@@ -271,54 +283,64 @@ p_{a \rightarrow c}(\vec r) = (1 - p_{c \rightarrow a}(\vec r)) \Big(1 - \frac{\
        \end{minipage}
        {\bf Creation:}
        \begin{itemize}
-               \item multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$
+               \item Multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$
                      $Si$ implantation
-               \item $T=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation
+               \item $T_i=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation
        \end{itemize}
        \vspace{1cm}
-       {\bf Stiring up:}\\[0.5cm]
-       2nd $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ implantation step at
+       {\bf Stirring up:}\\[0.5cm]
+       $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ irradiation step at
        $150 \, ^{\circ} \mathrm{C}$
        \begin{itemize}
                \item This does not significantly change the carbon
                      concentration in the top $500 \, nm$
-               \item Nearly constant energy loss in the affected depth region
+               \item Nearly constant nuclear energy loss in the top $700 \, nm$
+                      region
        \end{itemize}
        \vspace{1cm}
        {\bf Result:}
        \vspace{0.7cm}
        \begin{center}
-               \includegraphics[width=25cm]{multiple_impl_e.eps}
+               \includegraphics[width=25cm]{multiple_impl_e_ver2.eps}
        \end{center}
        \begin{itemize}
                \item Already ordered structures after $100 \times 10^6$ steps
                      corresponding to a dose of $D=2.7 \times 10^{17} cm^{-2}$
                \item More defined structures with increasing dose
        \end{itemize}
-       {\bf\color{blue} Starting point for materials showing strong\\
+       {\bf\color{blue} Starting point for materials showing strong
                         photoluminescence}\\
        {\scriptsize Dihu Chen et al. Opt. Mater. 23 (2003) 65.}
   \end{pbox}
-  \vspace{-1cm}
+  \vspace{-1.5cm}
   \begin{pbox}
        \section*{Conclusions}
                \begin{itemize}
-                       \item Observation of self-organised nanometric
+                       \item Observation of selforganised nanometric
                              precipitates by ion irradiation
-                       \item Model proposed describing the seoforganisation
+                       \item Model proposed describing the selforganisation
                              process
-                       \item Model implemented to a Monte Carlo simulation code
-                       \item Simulation is able to reproduce experimental
-                             observations
+                       \item Model implemented in a Monte Carlo simulation code
                        \item Modelling of the complete depth region affected
                              by the irradiation process
+                       \item Simulation is able to reproduce entire amorphous
+                             phase formation
                        \item Precipitation process gets traceable by simulation
                        \item Detailed structural/compositional information
                              available by simulation
-                       \item Recipe proposed for the formation of broad
-                             distributions of lamellar structure
+                       \item Recipe proposed for the formation of thick films
+                             of lamellar structure
                \end{itemize}
   \end{pbox}
+  \vspace{-1.5cm}
+  \begin{pbox}
+       \section*{Publications}
+               {\scriptsize
+                F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
+                B. Stritzker. Comp. Mater. Sci. 33 (2005) 310.\\
+               F. Zirkelbach, M. H"aberlen, J. K. N. Lindner,
+                B. Stritzker. Nucl. Instr. and Meth. B 242 (2006) 679.}
+  \end{pbox}
 
 \end{pcolumn}
 \end{poster}