\end{itemize}
\end{minipage}
\begin{minipage}[t]{0.5\textwidth}
- {\bf TRIM collsion statstics}
+ {\bf TRIM collision statstics}
\begin{center}
\includegraphics[width=12cm]{trim_coll_e.eps}
\end{center}
\begin{pbox}
\section*{Recipe:\\
Thick films of ordered lamellar structure}
- {\bf Prerequisites:}\\
+ \begin{minipage}{0.33\textwidth}
+ {\bf Prerequisites:}\\
Crystalline silicon target with a nearly constant carbon
concentration at $10 \, at. \%$ in a $500 \, nm$ thick
surface layer
- \begin{center}
- \includegraphics[width=18cm]{multiple_impl_cp_e.eps}
- \end{center}
+ \end{minipage}
+ \begin{minipage}{0.65\textwidth}
+ \begin{center}
+ \includegraphics[width=15cm]{multiple_impl_cp_e.eps}
+ \end{center}
+ \end{minipage}
{\bf Creation:}
\begin{itemize}
\item multiple energy ($180$-$10 \, keV$) $C^+$ $\rightarrow$
$Si$ implantation
\item $T=500 \, ^{\circ} \mathrm{C}$, to prevent amorphisation
\end{itemize}
- {\bf Stiring up:}\\
+ \vspace{1cm}
+ {\bf Stiring up:}\\[0.5cm]
2nd $2 \, MeV$ $C^+$ $\rightarrow$ $Si$ implantation step at
$150 \, ^{\circ} \mathrm{C}$
\begin{itemize}
concentration in the top $500 \, nm$
\item Nearly constant energy loss in the affected depth region
\end{itemize}
+ \vspace{1cm}
{\bf Result:}
+ \vspace{0.7cm}
\begin{center}
\includegraphics[width=25cm]{multiple_impl_e.eps}
\end{center}
\item Model proposed describing the seoforganisation
process
\item Model implemented to a Monte Carlo simulation code
- \item Simulation is able to reproduce experimenal
+ \item Simulation is able to reproduce experimental
observations
+ \item Modelling of the complete depth region affected
+ by the irradiation process
\item Precipitation process gets traceable by simulation
\item Detailed structural/compositional information
available by simulation