Das einfallende Teilchen startet mit der Anfangsenergie $E = E_0$ an der Oberfl"ache des Targets.
Drei Zufallszahlen $R_1$, $R_2$ und $R_3$ werden auf die physikalischen Gr"o"sen freie Wegl"ange $l$, Sto"sparamter $p$ und den Azimutwinkel $\Phi$ abgebildet.
+ Die freie Wegl"ange
+
+ Danach wird der Sto"sparameter durch $p = R_2 p_{max}$ bestimmt.
+ Dabei gilt f"ur das Maximum $p_{max}$ des Sto"sparameters:
+ \[
+ \pi p^2_{max} l = N^{-1} \quad \textrm{.}
+ \]
+
Der Azimutwinkel $\Phi$ ist statistisch isotrop verteilt.
\begin{equation}
\Phi = 2 \pi R_3
\end{equation}
- EDIT: Wahl von Sto"sparameter $p$, Wahl von mittlerer freier Wegl"ange $l$.
-
- Mit Hilfe der von Biersack entwickelten \dq magic formula \dq{} \cite{ziegler_biersack_littmark} kann aus dem Sto"ssparamter $p$ analytisch der Streuwinkel $\Theta$ errechnet werden.
+ Mit Hilfe der von Biersack entwickelten \dq magic formula\dq{} \cite{ziegler_biersack_littmark} kann aus dem Sto"ssparamter $p$ analytisch der Streuwinkel $\Theta$ errechnet werden.
Mit Hilfe des Ablenkwinkels wird dann durch \eqref{eq:final_delta_e} der Energie"ubertrag $\Delta E$ bestimmt.
Der elektronische Energieverlust ergibt sich aus dem Produkt der freien Wegl"ange $l$ mit dem Ausdruck f"ur die elektronische Bremskraft $S_e(E)$ aus \eqref{eq:el_sp} und der atomaren Dichte $N$.
Durch die freie Wegl"ange und den Ablenk- und Azimutwinkel ist der Ort des n"achsten Sto"sprozesses festgelegt.